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Introduction and Short Summary 
of the Workshop

 Johannes Fritsch (Berlin)*

A History of Free Enquiry

In 1652, four physicians established the Academia Naturae Curiosorum in the Free Imperial 
City of Schweinfurt. It is now the oldest continuously existing academy of medicine and the 
natural sciences in the world. The four physicians invited leading scholars of their day to join 
them in ‘exploring nature […] for the glory of God and the good of mankind’. The motto they 
selected for this ambitious objective was Nunquam otiosus (‘never idle’).

The members realised that in order to draft a proposed encyclopaedia they would have to 
gather existing knowledge and subject it to discussion. To this end, in 1670 Sachs Lewen-
haimb, a physician in Breslau (Wrocław), initiated the world’s first journal of natural science 
and medicine, Miscellanea Curiosa Medico-Physica Academiae Naturae Curiosorum, which 
is still in print today.

Soon after it was established, the Academy started to seek public recognition. It gained 
this in August 1677, when it was granted official approval by Emperor Leopold I. Ten years 
later, Leopold I awarded the Academy special privileges, guaranteeing its independence 
from the various ruling dynasties in the region and providing complete freedom from censor-
ship for all its publications. Since then, the Academy has been called Sacri Romani Imperii 
Academia Caesareo-Leopoldina Naturae Curiosorum − or the Leopoldina for short.

A Workshop for Leopoldina’s Mission

The members of Leopoldina still come together in regular meetings to share and discuss their 
work. In 2008, the Leopoldina was appointed as the German National Academy of Sciences, 
taking on the responsibility to disseminate the newest scientific information not only among 
scientists but also to the public and politicians. As an expression of this commitment, the 
Academy initiated a new format of workshops under the theme Crossing Boundaries in Sci-
ence. These workshops are meant to stimulate discussions between areas of research that are 
particularly dependent on new forms of interdisciplinary cooperation and method transfer.

In this publication, we present the talks given at the first workshop of this series, entitled 
“Modelling Nature and Society – Can We Control the World?” The workshop took place in 
the city of Weimar from 30 June to 2 July 2016. Its objective was to provide an overview of 

* Nationale Akademie der Wissenschaften Leopoldina.
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current attempts to understand and control complex systems in nature and society. We asked 
13 researchers from different fields of scientific research to answer four principal questions:

– Can your complex system of interest be reduced to a small number of predictive variables 
and which attributes of the system do these variables describe?

– What are the trade-offs when employing rich statistical models, based on large amounts of 
data (‘big data’), instead of simple reductionist models?

– Does your model have sufficient predictive power to allow for target-oriented strategic 
interventions?

– Natural complex systems tend to self-organise. Can you harvest the power of naturally 
occurring self-organisation to create more fault-tolerant information processing systems?

The answers to these questions are, naturally, as diverse as the fields of study represented at 
this workshop. To give a short overview:

Peter Schuster (Professor Emeritus, Institute for Theoretical Chemistry, University of 
Vienna, Austria) identifies a number of sources of complexity in natural systems focusing on 
biochemical pathways: the lack of knowledge about these systems, the lack of technology to 
record their behaviour accurately enough, the combinatorial explosion of possible pathways 
in strongly interacting systems, and the tinkering hand of evolution.

Christiane Nüsslein-Volhard (Max Planck Institute for Developmental Biology, 
Tübingen) describes the long path toward understanding one of the complex outcomes of evo-
lutionary tinkering: the process of morphogenesis, i.e. the development of a single fertilised 
egg to a complex organism consisting of billions of differentiated and organised cells. She 
emphasises the importance of conceptual insights in reducing the complex interplay of genes 
and environment in a developing embryo to a number of key growth factors. Identifying those 
factors, namely gradients of molecules called ‘morphogens’, earned Nüsslein-Volhard the 
1995 Nobel Prize in Physiology or Medicine.

Marc Thilo Figge (Leibniz Institute for Natural Product Research and Infection Biol-
ogy – Hans Knöll Institute, Jena) introduces the power of computational modelling for studies 
on pathogen-host interactions, particularly the conditions under which pathogenic fungi can 
cause life-threatening infections of the lung and in blood. Using data from infected patients, 
he creates ‘virtual patients’, a promising candidate model for patient-dependent interventions.

Wolf Singer (Max Planck Institute for Brain Research, Frankfurt am Main) illustrates 
the surprising robustness of the most complex biological system known to mankind: the 
mammalian cortex. Despite its unrivalled complexity, the cortex can still compensate for re-
gional damage. Singer proposes that some of the brain’s architectural principles could serve 
as a blueprint for more robust artificial systems, namely: distributedness, a flat hierarchy, and 
adaptivity combined with a central evaluation system.

Wolfram Burgard (Albert Ludwigs University, Freiburg) turns the attention to those 
systems that may benefit from complexity-based robustness, namely autonomous learning 
machines such as self-driving cars. He describes recent solutions to the problem of building 
intelligent agents with a focus on probabilistic and numeric models in concert with big data.

Eran Elinav (Weizmann Institute of Science, Rehovot, Israel) also exploits the use of 
big data; specifically, for the prediction host-microbiome interaction in the human gut. By 
feeding machine learning algorithms with large amounts of data, including gut microbiome 
DNA, meal features, logged activity and aspects of personal life, his models manage to devise 
personalised predictions of how particular foods will affect blood sugar levels in healthy and 
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diabetic subjects, resulting in highly personalised diets that may reduce the risk for develop-
ing obesity and diabetes significantly.

Thorsten Wiegand (Helmholtz Centre for Environmental Research, Leipzig) walks the 
audience through the types of models that are used in ecology in the attempt to predict the 
behaviour of ecosystems. His presentations follow a path from analytical and numerical equa-
tion models through agent-based and individual-based models to his own pattern-oriented 
approach to modelling ecosystems.

Iain Couzain (Max Planck Institute for Ornithology, Constance) reports on the ground-
breaking advances his group has made in modelling the collective movement behaviour of 
schools of fish as well as the implications of their models for other social species. His agent-
based models identify and incorporate the perceptual information used by the individual 
members to predict phase transitions and global states of the whole group.

Rudolf Stichweh (University of Bonn) introduces the surprisingly diverse definitions 
one can give to the concept of a ‘society’. How can we differentiate between hunter-gatherer 
societies, states, civilisations and a world society? Stichweh proposes that the level of dif-
ferentiation and socio-cultural evolution are the main dimensions along which these social 
systems differ and develop.

Thomas Lengauer (Max Planck Institute for Informatics, Saarbrücken) demonstrates 
the inner workings of his computational drug resistance model for viral pathogens such as 
HIV. Tapping into a growing database on viral resistance, his team developed a model to 
predict promising drug combinations for a given patient. Today, these statistical models can 
surpass the performance of rules-based expert systems. However, Lengauer emphasises that 
prediction of outcome for a complex system is not the same as understanding that system’s 
underlying mechanism.

Dirk Brockmann (Humboldt University of Berlin) explores a different aspect of patho-
gen-host interaction: the complex dynamics of global disease spread depending on social 
interactions and travel. By combining transmission dynamics within populations with a novel 
measure of distance for the global transport network (effective distance), his models manage 
to predict global disease spread with significantly increased accuracy compared to previous 
attempts.

Alan Kirman (CAMS, Ecole des Hautes Etudes en Sciences Sociales and Aix Marseille 
University, France) discusses a novel approach at modelling the dynamics of the global econ-
omy. He argues for a paradigm shift away from classic economic models based on the rational 
individuals seeking efficient outcomes towards modelling the adaptive behaviour of systems 
of individuals, each of whom follows rather simple rules.

Dirk Helbing (Swiss Federal Institute of Technology, Zürich, Swiss) concludes the 
workshop by arguing the case for his social force model, a model inspired by physics but 
adapted to social behaviour. He describes this model as being able to explain phenomena as 
diverse as traffic jams, crowd dynamics or industrial flows. Even more, he expects the social 
force model to accurately describe the dynamics in social economic systems, citing the vision 
of creating an operating system for society.

We hope that this collection of talks will stir your interest in the most recent advancements 
in our understanding of the complexity of nature and society. 365 years after the founding of 
Leopoldina, this workshop shows once more that our members are guided by the academy’s 
original spirit: to explore nature, for the good of humanity.
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Eröffnung des Abendvortrags

 Jörg Hacker ML (Halle/Saale)
 Präsident der Nationalen Akademie der Wissenschaften Leopoldina

Der mehrtägige Workshop „Modelling Nature and Society – Can We Control the World?“ 
ist der Auftakt zur neuen Veranstaltungsreihe „Crossing Boundaries in Science“ und wird 
großzügig vom Bundesministerium für Bildung und Forschung (BMBF) gefördert, dem mein 
herzlicher Dank gilt. Besonders Professor Dr. Frank Laplace möchte ich dafür danken, dass 
er diese Idee mit entwickelt und vorangetrieben hat. Diese Tagungsserie knüpft an die vom 
Frege Centre for Structural Sciences der Friedrich-Schiller-Universität in Jena organisierte 
und ebenfalls vom BMBF unterstützte Veranstaltungsreihe „Jena Life Science Forum“ (JLSF) 
an. Das JLSF fand in den Jahren 2009 und 2010 zum Thema „The Molecular Language of 
Life“ sowie mit Unterstützung der Leopoldina zum Thema „Designing Living Matter. Can 
We Do Better than Evolution?“ im Jahre 2012 statt.

Zu den zentralen Aufgaben der Leopoldina als Nationaler Akademie der Wissenschaften 
gehört es, Politik und Öffentlichkeit zu gesellschaftlich herausfordernden Fragen zu beraten 
und enge Bezüge zwischen Wissenschaft, Forschung, Politik und Gesellschaft zu etablieren. 
Das Ziel dieser Veranstaltungsreihe soll es daher sein, frühzeitig Forschungsgebiete zu iden-
tifizieren, deren zukünftige Entwicklung und gesellschaftliche Anwendung möglicherweise 
in besonderem Maße zur interdisziplinären Zusammenarbeit anregen. Umgekehrt dient In-
terdisziplinarität vielleicht sogar als Grundlage für solche Forschungsergebnisse. Die Veran-
staltungen sollen deshalb Erfolg versprechende Wissenstransfers intensiv debattieren – von 
konzeptuellen Anregungen über Methodenimporte bis zu Anwendungen neuer Technologien.

Bei der diesjährigen Veranstaltung in Weimar werden wir uns mit der wissenschaftlichen 
Modellbildung komplexer biologischer und sozialer Netzwerke sowie mit zielgerichteten 
und strategischen Eingriffen in diese Systeme befassen. Dabei stehen mikroskopisch kleine 
Systeme im Mittelpunkt, wie beispielsweise Gen-Netzwerke und das Immunsystem, aber 
auch globale Fragen, etwa aus dem Finanzsektor und aus den Verkehrssystemen. Alle diese 
Systeme haben eine Eigenschaft gemeinsam: Sie sind komplex. Für das Individuum ist ihre 
Komplexität kaum greifbar. Sie sind wenig vorhersagbar und meist nicht zu kontrollieren. 
Denken wir etwa an die globalen Finanzströme, an die Neuverschuldung von Staaten und – 
ein aktuelles Thema – den Austritt Großbritanniens aus der Europäischen Union; keine kon-
struierte Parallele, sondern tatsächlich ein komplexes Geschehen. Der einführende Vortrag 
von Professor Dr. Peter Schuster im Goethe-Nationalmuseum trägt daher auch den provo-
kanten Titel: „Vom Modell zur Steuerung – Sind wir überfordert von der Komplexität der 
Welt?“ 

Mithilfe unseres thematisch weitgefächerten Workshops zur Modellierung komplexer 
Systeme möchten wir zudem herausfinden, was unterschiedliche Fachdisziplinen vonein-
ander lernen können. Gibt es analoge konzeptuelle und methodische Grundlagen, um z. B. 
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sowohl ökologische, molekulare und gesellschaftliche Netzwerke zu modellieren? Welche 
und wie viele Variablen sind relevant und überhaupt sinnvoll für das angemessene Model-
lieren und für das Verständnis unterschiedlicher komplexer Systeme? Welche Prinzipien der 
natürlichen Selbstorganisation können angewendet werden, um belastbare, fehlertolerante In-
frastrukturen in unserer Gesellschaft zu schaffen? Diese und andere Fragen sollen im Fokus 
dieses Workshops stehen.
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Vom Modell zur Steuerung – 
Sind wir überfordert von der Komplexität der Welt?

 Peter Schuster ML (Wien, Österreich)1

Abstract

“Everything that is not simple is complex” – this is how a mathematical purist might define the aspect of complexity. 
However, what are the factors that determine whether a system is complex or not? As it turns out, complexity can be 
attributed to several causes: inadequate insight and knowledge, lack of technology, and untamable diversity. Consid-
er, for instance, the movements of the planets in the geocentric worldview of Ptolemy. The complexity of precisely 
predicting planetary motion, eccentricities and equants only disappeared when a new insight took hold: Newton’s 
laws of gravity. However, a full understanding of nonlinear systems was not possible until analytical mathematics 
and large numerical calculations could be simulated on computers. Even with these modern technologies, we can 
only mimic the complexity of nature in very simple cases. The evolutionary search for biomolecules is one example. 
Yet, the ultimate challenge of complexity research still resides in the enormous diversity of solutions that either 
emerge in nature or are created by humans. We find this diversity everywhere in biology, sociology, economics, and 
other disciplines. Here, we will provide an overview of the enormous complexity that awaits the researcher who 
seeks to model, predict, and control genuine systems in nature and human society.

1. Was versteht man unter Komplexität?

Komplexität ist zwar leicht zu erkennen, aber nur schwer, präzise zu definieren. Anders als 
einfache, reagieren komplexe Systeme auf Veränderungen auf nicht vorhersehbare Weise. 
Solche Strukturen sind oft Netzwerke von Wechselwirkungen, in denen kompensatorische 
Schwächung und Verstärkung von überlagerten Signalen es erschweren oder unmöglich ma-
chen, kausale Abläufe nachzuvollziehen.

Um Komplexität zu fassen, kann man aber prinzipiell so vorgehen, wie beim verwandten 
Problem der „Nichtlinearität“. Statt eine Definition zu geben, charakterisiert man über das 
Gegenteil: Nichtlinear ist alles, was nicht linear ist. Für die Komplexität hieße dies: Kom-
plex ist alles, was nicht einfach ist. Allerdings gibt es daneben noch eine dritte Möglichkeit, 
die „Kompliziertheit“: etwas, was weder einfach noch komplex ist. Einfach zu modellieren 
wäre etwa die Kausalkette: A→B→C. Kompliziert dagegen wäre schon eine nicht verzweigte 
Kette mit einer Million Einzelschritten: A→B→C→…→Z. Komplex ist sie aber noch nicht. 
Denn die Vorhersage, dass man bei Z landen wird, ist sicher, auch wenn der zeitliche Ablauf 
schwer zu ermitteln ist. Ein anschauliches Beispiel für den Unterschied zwischen einem ein-
fachen und einem komplexen System bieten die Glykolyse und die alkoholische Gärung im 
zellfreien Milieu und in der Zelle (siehe Abb. 1).

1 Exzerpiert und vereinfacht nach dem Vortragsmanuskript von Peter Schuster, Universität Wien, Österreich.
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Abb. 1  Ein Ablaufdiagramm der Glykolyse. Glukose mit sechs Kohlenstoffatomen wird in sechs Reaktionsschritten 
in zwei Moleküle Glycerinaldehyd mit je drei Kohlenstoffatomen zerlegt. Glycerinaldehyd wird in einer Folge von 
weiteren sechs Reaktionen in Milchsäure oder Äthanol umgewandelt oder als Pyruvat in den Zitronensäurezyklus 
eingespeist. Damit ist die Glykolyse in vitro im Wesentlichen eine eindimensionale Kette biochemischer Reaktionen 
(schwarze und gelbe Pfeile). Allerdings dienen zwei irreversible Reaktionsschritte (blaue Pfeile) der Regulation. In 
den komplexen Mechanismus einer Zelle eingebettet, wird an dieser Stelle, durch die Einspeisungen anderer Zucker 
(rot), aus der einfachen Kette ein Reak tionsnetzwerk mit Verzweigungen.

Glykolyse in vitro ist eine Kette von zehn oder elf Reaktionen, bei denen ein Molekül Glu-
cose in zwei Moleküle Brenztraubensäure umgewandelt wird und zwei Moleküle des che-
mischen Energieträgers ATP sowie zwei Moleküle NADH erzeugt werden. Je nach der Art 
des Gärungsprozesses wird mit NADH Brenztraubensäure (Pyruvat) zu Milchsäure reduziert 
(Milchsäuregärung) oder Acetaldehyd zu Ethanol (alkoholische Gärung).

Unter physiologischen Bedingungen fungieren drei der Reaktionsschritte auch als Regu-
latoren: (i) die Phosphorylierung der Glucose, (ii) die Phosphorylierung von Fructose-6-phos-
phat und (iii) die Dephosphorylierung von Phosphoenolpyruvat in Pyruvat. Schritt (i) wird 
durch die Konzentration der Reaktionsprodukte reguliert: Ist sie zu hoch, kommt die Reaktion 
zum Stillstand. Die beiden Schritte (ii) und (iii) regulieren die gesamte Reaktionskette und ar-
beiten dabei wie Schalter, die bei bestimmten Substratkonzentrationen umgelegt werden. Die 
Schalterfunktion selbst basiert auf der Geschwindigkeit der Reaktion, die wiederum von der 
Substratkonzentration abhängt. Diese Nichtlinearität entsteht durch Wechselwirkungen zwi-
schen den Untereinheiten des jeweiligen Enzyms, das die Reaktion katalysiert. Aber selbst 
bei einer Kette mit Tausenden von Reaktionen würden solche Regulationsmechanismen die 
Berechnungen der Produkt- und Substrat-Konzentrationen zwar kompliziert und langwierig 
machen, aber nicht komplex.

Komplex wird die Glykolyse erst, wenn sie als Teil des zellulären Metabolismus abläuft. 
Dann wird aus der Reaktionskette ein ganzes Reaktionsnetzwerk. Man braucht der Glykolyse 
nur die anderen, in der Natur häufig vorkommenden Monosaccharide als Substrate anzubie-
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ten, und schon entstehen etliche Verzweigungen, die von den einzelnen Reaktionen abgehen. 
Richtig komplex wird das Netzwerk, wenn wir die Glykolyse als Teil des gesamten metabo-
lischen Reaktionsnetzwerks betrachten, dessen zahlreiche Verzweigungen alle Vorhersagen 
schwierig machen.

Warum ist das Verhalten stark verzweigter, rückgekoppelter Systeme wie der Glykolyse 
so schwer vorherzusagen? Wie sich zeigt, speist sich Komplexität unter anderem aus drei 
wesentlichen Quellen.

2. Komplexität als Resultat mangelnden Wissens

Im geozentrischen Weltbild von Pythagoras von Samos (ca. 570 –510 v. Chr.) sind die 
Himmelskörper auf durchsichtigen Hohlkugeln befestigt, den Sphären, die sich gleichförmig 
um die im Mittelpunkt stehende Erde drehen. Die beobachtbaren Bewegungen der Fixsterne, 
der Sonne und des Mondes waren mit der Vorstellung von solchen Sphären leicht in Einklang 
zu bringen. Bei den Planetenbewegungen aber ergaben sich gewaltige Unstimmigkeiten, die 
erst Claudius Ptolemäus (ca. 100 –160 n. Chr.) mit eleganten, aber ziemlich komplexen Be-
rechnungen zu beheben vermochte. Um die beobachteten Planetenbahnen durch eine Überla-
gerung gleichförmiger Kreisbewegungen zu erklären, benötigte er drei virtuelle Mittelpunkte 
der Himmelsmechanik sowie zwei zusätzliche hypothetische Sphären (siehe Abb. 2).

 

Abb. 2  Ein Diagramm zur Berechnung der von der Erde aus beobachteten Planetenbewegungen im ptolemäischen 
Weltbild. Ptolemäus führte zur Berechnung der Planetenbahnen Epizyklen ein, Bahnen, auf denen sich die Planeten 
um die Hauptbahn (Deferent) herumbewegen. Zur Berechnung benötigt man noch zwei weitere Werte: die Exzen-
trizität und den Equant.
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Erst Johannes Kepler (1571–1630) überwand die dogmatischen Vorgaben eines geozen-
trischen Weltenmodells mit Kreisbahnen und konstanten Winkelgeschwindigkeiten. Er be-
schrieb die Umlaufbahnen der Planeten um die Sonne ohne zusätzliche virtuelle Punkte. 
Endgültig „dekomplexifiziert“ aber wurde das Verständnis der Himmelsmechanik erst mit 
Newtons Bewegungs- und Gravitationsgesetzen. Mit Ausnahme von Korrekturen, die durch 
Einsteins Relativitätstheorie notwendig werden, können seither die Bewegungen aller Him-
melskörper erklärt werden.

Neues Wissen, das verschiedene Beobachtungen auf gemeinsame Prinzipien zurückführt, 
kann also den Anschein der Komplexität überwinden.

3. Komplexität aus Mangel an methodisch-technischen Möglichkeiten

3.1 Abhängigkeit von Anfangsbedingungen

Im Jahr 1899 schrieb Henri Poincaré (1854 –1912) eine Arbeit zur Lösung einer Preisauf-
gabe, die der schwedische König Oscar II. (1829 –1907) gestellt hatte. Deren Ziel war es, 
die mechanische Stabilität des Sonnensystems zu beweisen. Das Dreikörperproblem Son-
ne – Planet – Erde hat auch instabile Lösungen und insbesondere komplexe, in hohem Maße 
irreguläre Bahnen. Poincaré schrieb über die Empfindlichkeit der Lösungen gegenüber Pa-
rametern und Anfangsbedingungen:

„Eine sehr kleine Ursache, die wir nicht bemerken, bewirkt einen beachtlichen Effekt, den wir nicht übersehen 
können, und dann sagen wir, der Effekt sei zufällig. Wenn die Naturgesetze und der Zustand des Universums zum 
Anfangszeitpunkt exakt bekannt wären, könnten wir den Zustand dieses Universums zu einem späteren Moment 
exakt bestimmen. Aber selbst wenn es kein Geheimnis in den Naturgesetzen mehr gäbe, so könnten wir die An-
fangsbedingungen doch nur annähernd bestimmen. Wenn uns dies ermöglichen würde, die spätere Situation in der 
gleichen Näherung vorherzusagen – und dies ist alles, was wir verlangen – so würden wir sagen, dass das Phänomen 
vorhergesagt worden ist, und dass es Gesetzmäßigkeiten folgt. Aber es ist nicht immer so; es kann vorkommen, dass 
kleine Abweichungen in den Anfangsbedingungen schließlich große Unterschiede in den Phänomenen erzeugen. Ein 
kleiner Fehler zu Anfang wird später einen großen Fehler zur Folge haben. Vorhersagen werden unmöglich, und wir 
haben ein zufälliges Ergebnis.“2

Diese visionäre Aussage aus Poincarés Arbeit ist eine bedeutende Pionierleistung und wird 
oft als der Beginn der Chaostheorie angesehen.

Ebenfalls um die Wende vom 19. zum 20. Jahrhundert fanden einige Chemiker – allen vor-
an der aus Lettland stammende deutsche Physikochemiker Wilhelm Ostwald (1853 –1932) – 
Hinweise für das Auftreten komplexer Dynamik und spontaner Musterbildung bei chemi-
schen Reaktionen. Der Computerwissenschaftler Alan Turing (1912–1954) veröffentlichte 
im Jahr 1952 ein auf chemischer Reaktionskinetik basierendes mathematisches Modell der 
Musterbildung, das er als eine Erklärung der embryologischen Morphogenese vorschlug. 
Diesen Pionierleistungen fehlten, anders als Kopernikus mit seinem Weltenmodell, keine 
unentdeckten Naturgesetze. Was Ostwald und Turing fehlte, war eine Methodik, mit der 
komplexe Systeme untersucht werden konnten. Erst ab der zweiten Hälfte des 20. Jahrhun-
derts standen die nötigen mathematisch-analytischen und numerischen Methoden zur Verfü-
gung, um komplexe Systeme zu untersuchen und zu modellieren.

2 Frei übersetzt nach Oestreicher 2007. Die ursprüngliche französische Version findet sich in Poincaré 1892.
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3.2 Deterministisches Chaos

Den Durchbruch schaffte im Jahre 1963 der Atmosphärenphysiker und Meteorologe Edward 
Norton Lorenz (1917–2008).3 Am Computer integrierte er das relativ einfache Differential-
gleichungssystem
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und entdeckte, dass es unregelmäßig oszillierende Lösungskurven entstehen, wenn die
Parameter α, β und γ aus bestimmten Wertebereichen gewählt werden. Wie von Henri
POINCARÉ vorausgesagt, hing die Lösung des Gleichungssystems sehr stark von den
Parameterwerten und den Anfangswerten ab. Für sehr nahe beisammen liegende
Parameterwerte bleiben die Lösungskurven ein Zeitintervall lang fast ununterscheidbar.

2 Frei übersetzt nach OESTREICHER 2007. Die ursprüngliche französische Version findet sich in POINCARÉ
1892.

3 Siehe LORENZ 1963.
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und entdeckte, dass unregelmäßig oszillierende Lösungskurven entstehen, wenn die Para-
meter α, β und γ aus bestimmten Wertebereichen gewählt werden. Wie von Henri Poincaré 
vorausgesagt, hing die Lösung des Gleichungssystems sehr stark von den Parameterwerten 
und den Anfangswerten ab. Für sehr nahe beisammen liegende Parameterwerte bleiben die 
Lösungskurven ein Zeitintervall lang fast ununterscheidbar. Danach aber weichen sie immer 
stärker voneinander ab, sodass nur kurzzeitige Vorhersagen korrekt sind.

Das empfindliche Verhalten der Lösungskurven gegenüber den Anfangsbedingungen 
bezeichnet man heute als deterministisches Chaos. Nicht zufällig stammen die lorenzschen 
Differentialgleichungen aus einer vereinfachten Beschreibung atmosphärischer Luftströmun-
gen; die in ihnen beschriebene chaotische Dynamik ist eine wesentliche Ursache dafür, wie 
schwierig es ist, das Wetter langfristig vorherzusagen. Kurz- und mittelfristige Prognosen 
haben sich über Jahrzehnte hinweg zwar immer weiter verbessert; diese Fortschritte gehen 
aber in erster Linie auf die Vervielfältigung der Messdaten zurück, die wir heute von Wetter-
satelliten, Wetterflügen und anderen Messungen bis hinauf in die Stratosphäre erhalten.

Das Beispiel der Strömungsphysik von Gasen ist sehr illustrativ: In der Luftfahrttechnik 
erlaubt sie die Vorhersage der aerodynamischen Eigenschaften unterschiedlicher Profile mit 
höchster Genauigkeit, und es werden kaum mehr Experimente im Windkanal ohne vorhe-
rige Berechnung durchgeführt. Demgegenüber steht der tägliche Wetterbericht. Was macht 
hier den Unterschied? Die Antwort ist dieselbe wie im einleitenden Beispiel der Glykolyse: 
Der Windkanal bietet eine einfache und (abgesehen von kontrolliert variierten Versuchspa-
rametern) konstante Umgebung. Dagegen besitzt die Erdoberfläche mit ihren Flachländern, 
Gebirgen, Wasser- und Eismassen sowie starken vertikalen und horizontalen Temperaturun-
terschieden höchst heterogene Randbedingungen für den atmosphärischen Fluss. Neben der 
Komplexität, die Gasströmungen an sich innewohnt, ist es die Einbettung in eine komplexe 
Umwelt, die die Dynamik der Atmosphäre in der Natur so schwer vorhersagbar macht.

Der Vergleich zeigt, dass die Ergebnisse stark von verfügbaren technischen und methodi-
schen Möglichkeiten abhängen. So führen korrekte wissenschaftliche Modelle – je nach der 
Natur des Problems – zu Ergebnissen von sehr unterschiedlicher Verlässlichkeit.

4. Komplexität durch Vielfalt

In der Mathematik gibt es eine unschlagbare Methode zur Erzeugung von Vielfalt: die Kom-
binatorik. Setzt man eine Kette aus zehn Gliedern zusammen, von denen jedes aus zehn Ty-
pen beliebig ausgewählt werden kann, dann beträgt die Zahl der möglichen verschiedenen 
Ketten 1010 oder 10 Milliarden. Die Vielfalt der Kombinatorik ist auch das Erfolgsrezept der 

3 Siehe Lorenz 1963.
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Biologie. Durch die Kombination von Bausteinen zu eindimensionalen Ketten wird die Zahl 
möglicher Sequenzen von Nukleinsäuren oder Proteinen gewaltig: Für Ribonukleinsäuren 
(RNA) von der Länge einer typischen transfer-RNA gibt es etwa 1045 verschiedene Nukleo-
tidsequenzen, für ein kleines Protein hingegen, das etwa so groß wie Lysozym aus Hühner-
eiklar ist, 10168 verschiedene Aminosäuresequenzen. Die Evolution kann daher immer nur in 
einem winzig kleinen Ausschnitt des riesigen Raumes aller möglichen Sequenzen stattfinden.

Allerdings reicht eine große Zahl verschiedener Ketten nicht aus, um echte Vielfalt zu 
schaffen. Ein Beispiel, an dem man dies gut sehen kann, ist heteropolymeres Plastik. Solche 
Materialien bestehen aus extrem vielen verschiedenen Sequenzen. Jedoch haben praktisch 
alle von ihnen die gleichen Eigenschaften, sodass das Endprodukt weitgehend einheitlich 
bleibt. Wodurch kommt nun die augenscheinliche Vielfalt in der Biologie zustande? Biopo-
lymersequenzen falten sich unter gleichen Umgebungsbedingungen auf eindeutige Weise. Es 
ist diese dreidimensionale Struktur, die letztlich die molekularen Eigenschaften eines Bio-
moleküls bestimmt. Die Beziehung zwischen Strukturen und Eigenschaften kann als mathe-
matische Abbildung verstanden werden, aus dem Raum der Strukturen in einen Raum jener 
Parameter, die die Eigenschaften des Biomoleküls quantifizieren. In der Abbildung 3 ist diese 
Beziehung zwischen Bausteinsequenzen und Eigenschaften als Folge von zwei Abbildungen 
skizziert, die den Vorstellungen der Strukturbiologie entsprechen.

 

Abb. 3  Das Paradigma der Strukturbiologie. Die Beziehung zwischen Sequenzen, Strukturen und Fitness ist anhand 
eines einfachen Beispiels, einer kleinen binären Sequenz mit der Länge 17, als eine Folge von zwei (mathemati-
schen) Abbildungen (Pfeile) skizziert. Statt der vier Basen des Erbguts verwendet dieses Beispiel zwei Werte (C, 
G), um einen Sequenzraum zu illustrieren.4 Er besteht aus 131 072 Sequenzen. Diese werden auf 530 mögliche 
räumliche Strukturen abgebildet.5 Die Strukturen wiederum entsprechen Phänotypen, deren Fitness als eine zweite 
Abbildung aus dem Strukturraum auf Fitnesswerte verstanden wird.

4 Siehe Reader und Joyce 2002.
5 Siehe Schuster 2006.
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Die Vielfalt der Eigenschaften von Biopolymeren entsteht dort, wo eine kleine Veränderung 
der Sequenz, etwa der Austausch eines einzigen Nukleotidbuchstaben (eine Punktmutation), 
eine Änderung der molekularen Struktur zur Folge hat. Dies ist nicht immer der Fall – es gibt 
auch strukturneutrale Mutationen. Verändert die Sequenzänderung aber die Struktur, so kann 
das die molekularen Eigenschaften des Biopolymers stark beeinflussen. Eine solche struktur-
verändernde Mutation kann die Fitness des Organismus, also die Anzahl der Nachkommen, 
erhöhen, verringern oder unberührt lassen. Die Abbildungen 4 und 5 illustrieren diese Vor-
gänge am Beispiel eines RNA-Moleküls.

Abb. 4  Die Sekundärstruktur eines kleinen RNA-Moleküls. Die Abbil-
dung zeigt einen einfachen „Hairpin Loop“, der aus den vier Basen der 
RNA (A, C, G, U) aufgebaut ist. Die Nukleotid-Kette (oben) nimmt die 
Sekundärstruktur leicht ein, denn sie hat die geringste freie Energie. Das 
Prinzip der Strukturbildung lässt sich mithilfe der Basenpaare veranschau-
lichen: A paart mit U und G paart mit C. Gelegentlich kommen auch GU-
Paarungen vor. Unter der Sequenz am oberen Rand des Bildes ist eine 
schematische Darstellung von Sekundärstrukturen in einem Alphabet mit 
drei Symbolen gezeigt. Klammern kennzeichnen Basenpaare, einzelne 
Punkte stehen für ungepaarte Nukleotidreste.

 

Zusammengefasst können wir sagen, dass kombinatorische Komplexität bei Biomolekülen aus 
zwei unabhängigen Quellen entsteht: aus der Diversität durch kombinatorische Vielzahl von 
Sequenzen und durch die komplexe Beziehung zwischen Sequenzen, Strukturen und bioche-
mischen Eigenschaften. Sind beide Kriterien erfüllt, dann resultiert eine unerschöpfliche Viel-
falt von molekularen Strukturen mit einem ungeheuer breiten Spektrum von Eigenschaften.

5. Komplexität durch Evolutionäres Basteln

Neben der Diversität der Biomoleküle birgt die Evolution noch eine weitere Quelle der 
Komplexität: die sogenannte evolutionäre Bricolage, zu Deutsch das evolutionäre Basteln 
mit dem bereits vorhandenen molekularen Baukasten. Der Begriff geht auf den Franzosen 
François Jacob (1920 –2013) zurück. Im Jahr 1977 führte er in seinem Artikel Evolution 
and tinkering (1977)6 aus, dass die Evolution kein grundlegendes Neudesign hervorbringt, 
sondern stets aus dem bereits Vorhandenen schöpfen muss. Dabei würden Teile einer Ge-
samtstruktur so umfunktioniert, dass sie in Aufgaben zum Einsatz kommen, für die sie 

6 Siehe Laubichler 2007.
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ursprünglich nicht gedacht waren. Jacob verglich die Natur mit einem Bastler (franz.: le 
bricoleur), der nicht neu designen kann, sondern seine „Konstruktionen“ aus vorhandenen 
Stücken zusammenbauen muss.

Seit Jacobs Arbeit sind zahllose Beispiele von evolutionärer Bricolage aus vielen Berei-
chen der Biologie bekannt geworden.7 Besonders eindrucksvoll sind Ergebnisse der Kom-
bination von Entwicklungsbiologie und Molekulargenetik,8 die gezeigt haben, dass vom 
Ursprung her gleiche (homologe) Gene9 in verschiedenen Arten unterschiedliche Regulati-
onsfunktionen ausüben. Die aus diesen homologen Genen produzierten, evolutionär konser-
vierten Proteine erfüllen also unterschiedliche Aufgaben in verschiedenen Arten.

7 Siehe Duboule und Wilkins 1998.
8 Siehe Carroll 2008.
9 Als homolog werden Gene genannt, die phylogenetisch von einem gemeinsamen Vorfahren abstammen.

 

Abb. 5  Die Strukturen aller Einfehler-Mutanten einer kleinen RNA. Die Abbildung zeigt die Sekundär-Strukturen 
aller 51 Einfachpunktmutationen der Sequenz X0 aus Abbildung 4. Einige Mutationen bringen dieselbe Struktur 
hervor. Die häufigste ist die Struktur in der Mitte; sie kommt insgesamt 15-mal vor. Die Häufigkeiten der anderen 
Strukturen (farbige kleine Zahlen) sind im inneren Kreis angegeben. Die großen grauen Zahlen geben ein Maß für 
die Unähnlichkeit von zwei Strukturen (die Basenpaardistanz) an. Beispielsweise sind S1 und S9 der dominierenden 
Struktur S0 am ähnlichsten, oder am wenigsten unähnlich.
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Fortlaufendes Basteln führt zu überaus komplexen Formen der Wechselwirkung durch Ak-
kumulation zufälliger Funktionszuordnungen, sodass die Bestandsaufnahme und Analyse 
biologischer Regelkreise noch erschwert ist. Es ist daher naheliegend, auch das evolutionäre 
Basteln als eine Quelle von Komplexität in der Biologie anzusehen.

6. Künstliche Evolution umschifft das Problem der Komplexität

6.1 Wie schafft es die Natur, aus der ungeheuren Vielfalt möglicher Lösungen die brauchba-
ren herauszufinden?

Ein Erfolgsrezept hat Charles Darwin (1809 –1882) entdeckt und korrekt gedeutet.10 Die 
darwinsche Evolution findet in Populationen statt und benötigt drei voneinander unabhängige 
Systemeigenschaften.

– Die Individuen der Population müssen sich vermehren können.
– Neben perfekten Kopien bringt diese Reproduktion auch fehlerbehaftete Kopien (Mutati-

onen) hervor, die zur Variation der Eigenschaften von Individuen führen. Neben der Mu-
tation entspringt die genetische Vielfalt bei höheren Organismen außerdem der Rekombi-
nation: Bei der sexuellen Reproduktion werden die Genome der beiden Paarungspartner 
in Pakete zerlegt und in den Nachkommen neu kombiniert. Dadurch entstehen Genome 
mit neuen Genkombinationen, ohne dass durch Mutation neue Gene auftreten.

– Infolge eines Wettbewerbs um endliche Ressourcen kommt es zur Selektion jener Mutati-
onen, die die höchste Fitness erzeugen. 

Das Selektionsprinzip an sich ist einfach. Komplex wird die Biologie, wenn man danach 
fragt, welche Eigenschaften eines Organismus seine Fitness bestimmen und wie sie dies tun. 
In der Realität ist die Befähigung zur Reproduktion die wichtigste der drei Eigenschaften 
darwinscher Evolution, denn die anderen beiden ergeben sich zwangsläufig: Kein natürlicher 
Prozess tritt mit vollkommener Genauigkeit ein – schon allein aufgrund der thermischen Be-
wegung der Moleküle sind Fehler unvermeidbar. Und dass die Ressourcen in einer endlichen 
Welt endlich sind, ist eine Trivialität.

Von allen bekannten Biomolekülen haben nur die Nukleinsäuren, RNA und DNA, die Fä-
higkeit, als obligate Vorlagen für eine Reproduktion dienen zu können. Das Eigenschaftswort 
obligat bedeutet, dass jede Sequenz repliziert werden kann. Nukleinsäuren sind daher gute 
Kandidaten für das Studium von darwinscher Evolution in einfachen chemischen Systemen.

6.2 Probieren statt studieren: Künstliche Evolution als methodischer Ausweg?

Wie können wir als Forscher evolutionäre Prozesse experimentell untersuchen, ohne an der 
Komplexität natürlicher Systeme zu scheitern? In den 1960er Jahren wurden die ersten er-
folgreichen Evolutionsexperimente im Reagenzglas durchgeführt.11 Zur Reproduktion von 
RNA-Molekülen diente ein einfaches Enzym, Qβ-Replikase, welches aus Escherichia-coli-
Bakterien isoliert wurde, die mit Qβ-Bakteriophagen infiziert waren. Einige Zeit nachdem 

10 Siehe Darwin 1859.
11 Siehe Spiegelman 1971.
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Sol Spiegelman (1914 –1983) und Mitarbeiter die ersten erfolgreichen Evolutionsexperi-
mente durchgeführt hatten, gelang Christof K. Biebricher (1941–2009) im Laboratorium 
von Manfred Eigen die erste vollständige molekularkinetische Analyse dieser künstlichen 
Evolution.12 Sehr bald wurde erkannt, dass die evolutionäre Optimierung in vitro auch zur 
Herstellung von vermehrungsfähigen Molekülen mit vorbestimmten Funktionen eingesetzt 
werden kann. Dabei wird die natürliche Auslese durch künstliche Selektion nach den Vorga-
ben des Experimentators ersetzt. Die im Laborbetrieb am meisten verwendete evolutionäre 
Methode wird SELEX (systematic evolution of ligands by exponential enrichment) genannt. 
Bei dieser Methode erfolgt die künstliche Selektion mithilfe einer Chromatographiesäule, an 
welche die Zielmoleküle gebunden sind, für die optimale Bindemoleküle „gezüchtet“ werden 
sollen. Die Verbesserung der gewünschten Eigenschaften erfolgt in Selektionszyklen, die so 
oft wiederholt werden, bis ein zufriedenstellendes Ergebnis erzielt wurde.

Bei der Optimierung durch eine solche künstliche Evolution ist eine Kenntnis der funk-
tionellen Strukturen nicht notwendig. Damit wird die größte Komplexitätsklippe der Struk-
turbiologie umschifft, die, wie wir vorhin beschrieben, in den ungeheuer verwickelten Be-
ziehungen zwischen Sequenzen und Strukturen besteht. Die Steuerung der Synthese von 
Molekülen mit vorbestimmbaren Eigenschaften wird von unserem Wissen über die Biomole-
küle auf den Evolutionsprozess übertragen. Dementsprechend wurde das komplexe Problem 
der Sequenz-Struktur-Eigenschaft-Beziehung auf das einfache Problem des evolutionären 
Designs übertragen.

Eine Redewendung in den Vereinigten Staaten lautet: „There is no free lunch“, und dies 
gilt in vollem Umfang auch hier. Bei den evolutionären Methoden müssen sehr viele Mole-
küle synthetisiert und ausprobiert werden, wogegen das rationale Design, wie man die nicht 
evolutionäre direkte Methode nennt, mit der einfachen Synthese der optimalen Verbindung 
auskommt. Mangel an Wissen wird in der evolutionären Biotechnologie mit dem Aufwand 
einer gewaltigen Materialschlacht bezahlt.

7. Komplexität ohne Ende – ein Ausblick

Zum Schluss betrachten wir noch die Entwicklung von Komplexität in der biologischen 
Evolution als Ganzes. Die Komplexität von Individuen nimmt ebenso zu wie jene der bio-
logischen Welt als Ganzes. Obwohl es schwer fällt, einen Mechanismus für die Komplexi-
tätszunahme anzugeben, ist es nicht schwer, Beispiele zu finden, die zeigen, dass die geneti-
sche Information eines Organismus im Laufe der darwinschen Evolution nicht systematisch 
zunimmt.13 John Maynard Smith und Eörs Szathmáry ordnen in ihrer Monografie die 
Komplexitätszunahmen der Biosphäre in Phasen, sogenannten major transitions.14 Solche 
Hauptübergänge führen von Einzelmolekülen zu Genomen, von einer RNA-Welt zu einer 
DNA-RNA-Proteinwelt, von Prokaryoten zu Eukaryoten, von Einzellern zu Vielzellern, von 
solitären Individuen zu Tiergesellschaften, von Primatengesellschaften zu menschlichen Ge-
sellschaften. Und diese wiederum haben von der Steinzeit bis heute in mehreren Übergängen 
stark an Komplexität zugenommen.

12 Biebricher et al. 1983, Biebricher 1983.
13 Siehe Schuster 2016.
14 Siehe Maynard Smith und Szathmàry 1995.
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Wer diese Komplexität in Natur und Gesellschaft verstehen und meistern will, kommt um die 
richtige Kombination rigoroser mathematischer Analyse großer Mengen sorgfältig ausgewählter 
Daten und umfangreicher Computersimulationen nicht herum. Noch steckt unser Verständnis 
der komplexen Lebensvorgänge in den Kinderschuhen. Dennoch gelingt es an einigen Stellen 
bereits, die metabolischen Prozesse zu modellieren und zu steuern, so etwa im Fall von Viren 
und Bakterien. Und ich bin überzeugt, dass wir auf diesem Gebiet rasant dazulernen werden. 
Alle zwei bis drei Jahre gibt es eine umwälzende Neuerung – die CRISPR-Cas9-Technologie 
war die jüngste und sicher nicht die letzte. Zugleich behalten grundlegende Erkenntnisse, wie 
die mendelschen Gesetze der Vererbung ihre Gültigkeit. Das Wissen um Epigenetik hat die 
biologischen Erkenntnisse entscheidend erweitert,15 auch wenn Tier- und Pflanzenzüchter heute 
wie damals ihre Samen und Tiere für die Kreuzungen nach denselben auf Mendel zurückge-
henden Kriterien aussuchen. Auch die aus der Molekularbiologie abgeleiteten Grundeinsichten, 
wie das Dogma „DNA macht RNA macht Proteine“ (Crick), werden entlang neuer Erkennt-
nisse modifiziert, ergänzt und erweitert, während ihre prinzipielle Gültigkeit bestehen bleibt.
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Diskussion

Gast: Sie haben bei den chemischen oder biochemischen Wegen von Schaltern gesprochen. 
Ich habe dies so früher auch gelernt. In der Biologie gibt es jedoch keine digitalen Schal-
ter, mit denen man an- und ausschalten kann, sondern die Komplexität entsteht dadurch, 
dass analog gearbeitet wird. Die Steuerung von Genexpression, bei der kein Gen an- oder 
ausgeschaltet wird, ist ein sehr analoger Prozess, der von vielen Dingen beeinflusst wird, 
zum Beispiel davon, wie viel exprimiert wird.

Schuster: Ich glaube, dass die Daten von der Phospho-Fructokinase zeigen, dass die Phos-
phorylierung keinen solchen Schalter hat. Aber die einzelnen Enzyme arbeiten an dieser 
Stelle genau so, dass sie den Rest der Reaktionskette anschalten und abschalten. Wir ver-
wenden An- und Abschalten eher als Analogie.

Singer: Herr Schuster, Sie haben, abweichend von Ihrem Titel, einen recht optimistischen 
Ausblick gegeben. Wenn wir nur genügend Daten – gute Daten – haben, genügend Re-
chenkapazität und genügend intellektuelle Kapazität, um analytische Rechnungen an-
zustellen, dann werden wir mit diesen Systemen zurechtkommen. Das alles ändert aber 
doch nichts daran, dass die Dynamik dieser Systeme prinzipiell fast nicht voraussagbar 
ist – auch, wenn wir die Randbedingungen gut kennen. Und, abgesehen davon, dass wir 
sie nicht kennen, bedeutet das ja aber auch, dass die Steuerbarkeit dieser Systeme außer-
ordentlich problematisch ist. Ich hätte gern Ihren Kommentar dazu, wie wir das, was wir 
täglich lesen, verstehen sollen. Nämlich, dass Eingriffe zum Beispiel in die Finanzmärkte 
oder Wirtschaftssysteme durch Besteuerungen bestimmte Effekte nach Ende der Wahl-
periode haben werden. Wie wahrscheinlich ist es, dass es sich dabei um Wunschträume 
handelt und überhaupt keine wissenschaftliche Basis dafür existiert, solche Prognosen 
zu machen? Und wie verhält es sich dann mit dem Eingreifen? Sollte man nicht lieber 
evolutionäre Algorithmen anwenden, um herauszufinden, wie sich komplexe Systeme sta-
bilisieren lassen, anstatt dirigistisch einzugreifen.

Schuster: Ich glaube nicht, dass man eine pessimistische Perspektive haben muss. Aber man 
benötigt eine rigorose mathematische Beschreibung des Problems, egal ob Finanzmarkt 
oder Biosphäre. Ein Beispiel wäre der Windkanal und der Wetterbericht. Bei beiden gibt 
es Luftströmungen, und um diese zu beschreiben, werden dieselben Gleichungen ver-
wendet. Der Windkanal ist sehr einfach und ohne Profil angelegt, sodass er eine perfekte 
laminare Strömung erzeugt, mit der man gut modellieren kann. Im anderen Fall haben wir 
dieselben Gleichungen, dieselben Strömungen, aber eine heterogene Oberfläche, nämlich 
die Erdoberfläche. Dies erzeugt Turbulenzen auf allen Skalen. Dann komme ich eigentlich 
nur weiter, wenn ich mit vielen Messstationen arbeite, also mit Big Data. Langfristige 
Vorhersagen werden dann allerdings sehr ungenau oder falsch. Ich brauche also ein or-
dentliches mathematisches Modell, die richtigen Daten und dann entsprechende Compu-
tersimulationen. Ohne die geht es nicht.
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Gast: Sie sagen, man brauche exakte mathematische Beschreibungen für ein Problem. Ich 
persönlich sehe das nicht, vor allem nicht bei Big Data. Es gibt dabei ja eigentlich keine 
exakte mathematische Beschreibung. Mit Big Data können wir nichts vorhersagen, son-
dern wir können nur retrospektiv erkennen, dass es vielleicht Korrelationen gibt.

Schuster: Aber ich muss die Big Data ja irgendwo eingeben. Denken wir an den Wetter-
bericht. Die Daten kommen in ganz einfache Wettermodelle hinein. Mit Big Data meine 
ich eine große Zahl, aber nicht wahlloses Sammeln in der Hoffnung, dass irgendwann 
einmal jemand kommen und die richtigen Schlussfolgerungen ziehen wird. Ich meine 
große Mengen der richtigen Daten, muss aber auch mit der entsprechenden Computerun-
terstützung arbeiten können.

Lengauer: Aus meiner Sicht schließen sich die mathematische Theorie und Big Data nicht 
aus, sondern können sich in der besten aller Welten ergänzen. Das beste Beispiel, das wir 
jüngst gesehen haben, sind die Gravitationswellen, die sicher eine Big-Data-Komponente 
haben. Daten, die dabei gesammelt werden, sind umfangreich und zunächst unstrukturiert 
und von Hand nicht zu durchsuchen. Wir haben jedoch auch eine unglaublich starke The-
orie, die uns in die Lage versetzt, diese Daten zu interpretieren. Und so eine Theorie hätte 
ich in der Biologie liebend gern auch; eine kleine Portion davon wäre uns schon sehr lieb. 
Diese gibt es heute noch nicht, und die Frage ist, ob es sie je geben wird.

Friedrich: Herr Schuster, Sie haben gezeigt, wie komplex das Ökosystem ist. Ist es denk-
bar zu modellieren, wie sich ein Ökosystem verhält, wenn man einen genetisch modifi-
zierten Organismus darin freisetzt? Wir Wissenschaftler werden ja dazu aufgefordert, uns 
zu den möglichen Risiken zu äußern.

Schuster: Meiner Meinung nach wissen wir über modifizierte Organismen noch zu wenig. 
Aber, wenn ich einen solchen Organismus freisetze, dann ist die sichere Prognose, dass 
dieser keine drei Generationen überlebt, da er ganz einfach weit weg ist vom Optimum 
der natürlichen Organismen. Eingriffe in das Ökosystem unternimmt der Mensch ja so-
wieso schon seit jeher. Ein Beispiel sind die Kaninchen in Australien. Das war kein gen-
technischer Versuch, aber er hatte katastrophale Folgen. Das kann man auch sehr schön 
bei uns beobachten: Wir haben Tiere, die es vorher hier nie gab und die alle durch den 
Menschen hereingebracht worden sind. Beispielsweise die Waschbären: In der Nähe von 
Göttingen auf Schloss Berlepsch gab es einen alten Grafen, der Waschbären mochte, sich 
welche hat kommen lassen und diese dann dort in einem Käfig gehalten hat. Sein Sohn 
fand jedoch: „Die armen Waschbären im Käfig, die lassen wir jetzt mal frei!“ Und dann 
haben sie begonnen – das war ungefähr 1920 – sich munter zu vermehren und nach Süden 
zu wandern. Nach dem Zweiten Weltkrieg waren sie in Salzburg, und jetzt sind sie schon 
in Kärnten. Ich sehe nicht, dass durch die Gentechnik, wie etwa CRISPR, etwas völlig 
anderes geschieht.

Hacker: Über den Brenner werden sie es wohl auch noch schaffen. Herr Schuster, herzli-
chen Dank für Ihren Vortrag und für die Diskussion.
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Opening Remarks

 Bärbel Friedrich ML (Berlin)1

On behalf of the German National Academy of Sciences Leopoldina and as a member of the 
Scientific Board of this conference, it is my great pleasure to welcome you to the workshop 
“Crossing Boundaries in Science”. This workshop is devoted to the topic of Modelling Nature 
and Society and thus addresses the question ‘Can We Control the World?’. I am delighted that 
so many guests accepted our invitation to participate in this scientific event that is taking place 
at one of the most splendid cultural sites in Germany, the city of Weimar.

The German National Academy of Sciences Leopoldina, which has organised this work-
shop, is one of the oldest academies of sciences worldwide. It was established in 1652. 25 
years later, it was officially endorsed by the German Emperor Leopold I. Today, the Leo-
poldina counts more than 1,500 members who are outstanding scientists from all disciplines 
and more than 30 countries. Among them are 32 Nobel laureates, and we are particularly 
honoured to welcome one of them, Professor Christiane Nüsslein-Volhard, who will give 
the first presentation in this session. In addition to acting as a scholarly society, the Leopol-
dina has adopted two major mandates since it was appointed the German National Academy 
of Sciences in 2008: to provide advice to policy makers and to civil society, and to represent 
the German scientific community on the international level. The Leopoldina is dedicated to 
identifying major scientific developments that may have a societal impact in the future, in-
cluding topics such as climate change, energy supply, the sustainable use of natural resources, 
demographic change, and new technologies for human healthcare – all of which are going to 
be discussed during the next two days.

About the Workshop

The Crossing Boundaries in Science workshop follows in the footsteps of the Jena Life Sci-
ence Forum conference series organised by the Friedrich Schiller University in Jena. We are 
grateful for the valuable advice we received from two colleagues who were involved in the 
preceding conferences, Olaf Küppers and Frank Laplace, and for the financial support from 
the Federal Ministry of Education and Research.

Crossing Boundaries in Science aims to stimulate the open discussion of scientific fields 
involving new forms of interdisciplinary cooperation and translational science. We hope that 
the selection of presentations will shine light on anticipated or emerging social transforma-
tions arising from scientific developments as well as on their potential ethical implications.

1 German National Academy of Sciences Leopoldina, Halle/Saale, Berlin.
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This first workshop is entitled “Modelling Nature and Society – Can We Control the World?” 
and focusses on the scientific modelling of complex biological and social networks. The con-
clusions derived from such models for targeted and strategic interventions will be discussed. 
Topics such as molecular gene networks, the immune system, epidemiological phenomena, 
traffic dynamics, financial systems and man-made climate change will be addressed. The 
complexity of these systems is barely comprehensible to the individual. And scientists are 
well aware of the limitations in modelling sophisticated, complex systems, since the results 
of strategic interventions into complex systems do not often meet the expected predictions.

Crossing Boundaries in Science will approach these challenges during what I hope will be 
lively discussions at the end of each session, raising questions such as:

– Are there analogous conceptual bases for the analysis of different complex networks?
– How many variables are required or useful for appropriate modelling?
– Are there advantages in using simplified versus comprehensive models based on big data?
– Can science contribute to targeted strategic interventions into complex cross-linked sys-

tems?

The excellent opening lecture by Peter Schuster last night already gave us some clues about 
the challenges and pitfalls of scientific models and their application to the management of 
complex systems.

Final Remarks

Finally, I would like to express my gratitude to the members of the Scientific Board for draft-
ing the concept and programme of the workshop on Modelling Nature and Society. I would 
also like to extend my thanks to the speakers for their upcoming contributions. Last but not 
least, I would like to acknowledge those behind the scenes who organised and coordinated 
this meeting, in particular Yvonne Borchert, Johannes Fritsch, and Stefan Artmann.
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Gradient Models in Developmental Biology: 
A Historical Perspective

 Christiane Nüsslein-Volhard ML (Tübingen)1

Abstract

The problem of complexity formation in the development of organisms has fascinated biologists for centuries. The 
contribution provides a historical perspective on research work in this field of developmental biology, starting at the 
beginning of the 20th century, when Theodor Boveri suggested that cell fates may depend on a graded distribution of 
some substance in the egg. In the 1920s, Hans Spemann discovered an organiser region in the newt embryo. In 1952, 
Alan Turing proposed a mathematical model to explain self-organisation from initially homogeneous states based 
on chemical interactions. In 1969, Lewis Wolpert coined the term ‘positional information’ and proposed a model of 
a gradient of a morphogen that elicits different responses depending on its concentration. In 1972, Gierer and Mein-
hardt formulated their gradient theory of local activation and lateral inhibition based on non-linear kinetics. This 
view was supported by mutant phenotypes in Drosophila. Systematic mutant screens in Drosophila and subsequent 
cloning of the genes have led to the identification of a large number of morphogenetic proteins.

1. Introduction: Theodor Boveri

The problem of how complexity arises in the development of every single organism has fas-
cinated biologists for centuries. By the beginning of the twentieth century, it had been rec-
ognised that the final pattern of cell differentiation in the embryo is established through a 
gradual process during which initially simple patterns are elaborated to achieve increasingly 
greater complexity. The morphological steps that produce this complexity are reproducible 
from one embryo to the next. However, the underlying mechanisms were unknown. Based 
on the observable polarity in sea urchin and nematode eggs, the German zoologist Theodor 
Boveri suggested that initial cell decisions might depend on a graded distribution of some 
substance in the egg, such that different amounts of that substance would be included in the 
different cells formed through cleavage (Boveri 1901). The central ideas that emerge from 
Boveri’s view of development are that spatial patterns are present as polar distributions of 
morphogenetic substances from the earliest stages, that these patterns are simple, and that the 
subsequent influence of genes on chromosomes builds the ultimate functional patterns in the 
final organism.

In Boveri’s days, genes were still to be discovered, genetics had not yet been devel-
oped, and the biochemical means of isolating and identifying molecular components were 
very limited. Despite these limitations, Hans Spemann, one of Boveri’s students, took the 
next big step when he discovered a specific region of the gastrulating newt embryo (obere 
Urmundlippe) which, when transplanted into the opposite side of a host embryo, would in-

1 Max Planck Institute for Developmental Biology, Tübingen.
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duce the formation of a new body axis in the surrounding tissue. This organiser experiment 
was very famous at the time (and led to the 1935 Nobel Prize) and many researchers tried to 
isolate the inducing ‘factor’ from that organiser region (Spemann 1935). But these attempts 
failed. The molecular nature of the organiser was revealed only recently, after molecular ge-
netics had been introduced to the analysis of embryology.

2. Turing: Reaction-Diffusion

In 1952, Alan Turing, the famous mathematician and code breaker, published the paper The 
Chemical Basis of Morphogenesis, in which he described a mathematical theory according to 
which patterns arise from uniformity by self-organisation triggered by chemical interactions. 
In simulations on his early computers, Turing described the emergence of patterns from the 
interaction of two substances which he called morphogens if the two morphogens diffuse at 
different rates. These types of models with two interacting diffusing morphogens were later 
coined reaction-diffusion (RD) models.

At the time, Turing’s paper made little impact. Many biologists dismissed it because it 
was mathematically too complicated; further, it failed to explain that biological specimen 
scaled, i.e. adjusted to size variations which Turing’s model could not explain. In addition, 
the discovery of the double helix in 1953 diverted the attention of biologists toward the study 
of molecular biology in prokaryotes and embryology became increasingly unpopular.

Nevertheless, in the early 1970s, a number of molecular biologists who had contributed 
to the elucidation of the genetic code, protein synthesis, and DNA replication turned to de-
velopmental biology with the aim of understanding the molecular basis for the increased 
complexity arising during development from the near homogenous egg cell. Several model 
systems were established, with research focussing on gene regulation and pattern forma-
tion in eukaryotes. Sydney Brenner introduced the nematode (roundworm) Caenorhabditis 

 

Fig. 1  Wolpert’s concept of positional information: a morphogen elicits different responses at different concentra-
tions. Thresholds of responses lead to a subdivision of the field.
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elegans as a genetic model system, Alan Garen and Seymor Benzer turned to Drosophila 
melanogaster, François Jacob started to work on mouse embryos, and George Streisinger 
selected the zebrafish Danio rerio as a vertebrate in which genetic approaches were feasible. 
The laboratories of the theoretical biologists Lewis Wolpert and Alfred Gierer investigated 
the striking regenerative capacities of the polyp Hydra attenuata.

Lewis Wolpert introduced the concept of positional information: the position of a cell 
within a developing field could be defined by the local concentration of a morphogenetic sub-
stance distributed in a concentration gradient. Complexity could arise from morphogens elic-
iting different responses with different thresholds above which a specific response would oc-
cur. Different concentration ranges must somehow translate into different cell states (Fig. 1) 
(Wolpert 1969).

Wolpert realised that early morphogenesis generally takes place when embryos are still 
very small, in areas comprised of 50 or 100 cells at most, and Francis Crick calculated that 
for such a small space, diffusion from a local source and decay in a ‘sink’ could result in a lin-
ear gradient (Crick 1970). Crick’s simple calculations, however, only showed that gradient 
formation by simple diffusion in embryos was plausible, not that gradients actually do exist.

3. Gierer and Meinhardt: Autocatalysis and Lateral Inhibition

Based on regeneration experiments in hydra, Alfred Gierer and Hans Meinhardt in Tübingen 
proposed a more versatile mathematical theory of biological pattern formation (Gierer und 
Meinhardt 1972). Their model incorporates two features frequently observed in biological 
systems: autocatalysis and lateral inhibition. Like Turing’s model, it is based on the different 
diffusibility of two components: a short-range activator with strong self-enhancing capabilities 
coupled to an inhibitor of longer range that suppresses the activator in the surrounding areas. The 
Gierer-Meinhardt equations were formulated in terms of non-linear reaction-diffusion kinetics, 
although the underlying concepts were not motivated by biochemistry, and both Gierer and 
Meinhardt always pointed out that there might be many different realisations of their theory. 
The diffusion and degradation of molecules was the simplest way to implement short-range 
activation and long-range inhibition in the models, but apart from inhibition Gierer and Mein-
hardt also considered other mechanisms for transporting and depleting a substrate (Fig. 2).

Although the theory was driven by the experimental work on hydra, it also provided an 
important general recipe for self-organisation using realistic boundary conditions and plau-
sible parameters. By introducing source densities in addition to the activator-inhibitor system, 
scaling could be explained, making Gierer and Meinhardt’s theory immediately attractive 
to developmental biologists. Strikingly, even in the absence of specific molecular data, these 
models correctly predicted the behaviour of several biological systems. With the inherent 
property of self-regulation, the final pattern is largely independent of the starting conditions. 
Based on these concepts, Meinhardt performed computer simulations of patterns that could 
be observed during development, such as embryonic polarity, segmentation, formation of 
spacing patterns, the positioning of stomata in plants or bristles in the epidermis of insects, 
the generation of net-like and branched structures like venation patterns in leaves, arborisa-
tions of trachea and blood vessels, and the chemotactic behaviour of eukaryotic cells.2

2 Meinhardt 1982; summarised in Roth 2011.
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4. Morphogens

At the time, the concept of gradients was not widely accepted, although the famous mirror 
image duplications obtained after experimental manipulations of the insect eggs had pointed 
to the existence of gradients as determinants of the patterning of the egg axes (Sander 1960). 
Morphogens had not yet been identified and were thought to be elusive substances present 
at very low concentrations. There were plenty of reasons why it was so difficult to isolate 
morphogens, or indeed any factor that would instruct embryonic tissue to develop a particular 
structure. In the assays that were attempted, extracts to be tested for their biological activity 
were added to fragments of embryos (or stumps of the body column in the case of hydra) 
that were deprived of the hypothetical factor. One problem with such an assay seemed to be 
that the factor may never have been completely absent from the embryo fragment, but upon 
operation may even redistribute or regenerate and thus cause erratic results. Furthermore, 
the coarse experimental interferences upset delicate balances within the developing embryo, 
causing artefacts that were difficult to distinguish from real effects.

When Gierer and Meinhardt published their theory, I was a graduate student in Tübin-
gen working on transcription of bacteriophage DNA. I cannot pretend that I fully grasped 
their model, but, in a mysterious way, the problem of pattern formation and morphogens 
fascinated me. At the time, Friedrich Bonhoeffer’s group worked on DNA replication in 

 
 

A 

 B 

Fig. 2  Gierer-Meinhardt Model: Simulations of gradient formation by autocatalysis and lateral inhibition. (A) De-
pletion model, (B) Diffusion model. Solid line: Activator. Dashed line: Inhibitor. Triangles: Source density. From 
Gierer and Meinhardt 1972.
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Tübingen. John Cairns had found that the enzyme thought to perform the replication, the 
Kornberg-polymerase, was not the right one, because, strikingly, a mutant lacking this en-
zyme was able to replicate normally (Lucia and Cairns 1969). Bonhoeffer performed 
systematic screens for temperature-sensitive mutations of DNA replication and identified the 
gene that encoded the replicating enzyme as well as other essential components of DNA rep-
lication. This work demonstrated how a mutation could cleanly and specifically eliminate one 
protein without affecting anything else. The missing factor could be isolated using an in vitro 
complementation assay. This convinced me of the power of a genetic approach to identify and 
isolate morphogens. I consulted the literature about combining embryology with genetics and 
soon found Drosophila.

At that time, Drosophila genetics largely dealt with mutants affected in the structures of 
the adult fly. Only a small number of embryonic mutants had been collected by scientists 
from the lab of Donald Poulson at Yale (Wright 1970). In the early seventies, some promis-
ing papers on Drosophila embryonic development were published. In a famous experiment, 
IIImensee and Mahowald (1974) demonstrated a transplantable activity localised at the 
posterior pole that could induce pole cell formation at the anterior. Even a mutant – grand-
childless – was described that lacked pole plasm and pole cells, albeit in another Drosophila 
species. It seemed feasible to identify more genes encoding such factors by screening for ma-
ternal mutations that affected the informational content of the egg. A mutant embryo lacking 
a morphogenetic factor might be rescued by the injection of extracts from wild-type embryos 
and thus provide an assay for the isolation of the factor, which would be much more specific 
than was possible with operations on normal embryos. Most excitingly, Garen and Gehring 
(1972) reported a rescue of a maternal mutant, deep orange, by cytoplasmic transplantation. I 
joined the lab of Walter Gehring at the Biozentrum in Basel in 1975 with the long-term goal 
to isolate morphogens in Drosophila.

5. Morphogenetic Mutants

To test the feasibility of using genetics to identify such genes, I first studied mutants that 
were available at the time. A fascinating maternal mutation, bicaudal, caused the formation 
of larvae with two rear ends in mirror-image symmetry, albeit with erratic and low penetrance 
(Nüsslein-Volhard 1979). In a pilot screen, I isolated a new maternal mutant, dorsal, with a 
very specific loss of ventral pattern elements, such that the entire embryo appears dorsalised. 
The mutant dorsal has a clean, penetrant, and non-variable phenotype that is also dosage de-
pendent. The phenotypic series suggested the existence of a gradient with a maximum at the 
ventral side of the egg determining the dorso-ventral axis. Taken together with the bicaudal 
phenotype, this implied that the anteroposterior and dorso-ventral axes were set up indepen-
dently by two gradients positioned at right angles to each other (Nüsslein-Volhard 1979).

In collaboration with Eric Wieschaus, with whom I shared a lab for three years at the 
European Molecular Biology Laboratories (EMBL) in Heidelberg, we set out to study the 
genetics of Drosophila development, with the aim to identify most, if not all, of the genes 
that are involved in patterning the Drosophila larva along the dorso-ventral and anteropos-
terior axes. Two sets of genes are required for larval patterning. Maternal genes such as bi-
caudal and dorsal would be expressed in the female during oogenesis and would provide 
components required for embryonic development already in the egg. Zygotic genes would 
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supply components via transcription in the embryo and affect later patterning events. Muta-
tions in both classes would cause lethality in the embryo and display a phenotype visible in 
the larval structures. Screens for maternal mutants are very tedious because they require two 
generations of inbreeding until homozygous females that can be tested for the production of 
abnormally patterned embryos can be obtained. We decided to first do large-scale screens for 
zygotic mutants because they were easier than maternal screens and extremely rewarding. 
Indeed, these projects resulted in a large and very exciting collection of patterning mutants, 
many of which turned out to encode morphogens.3

The screen for embryonic patterning mutants required the establishment of inbred fami-
lies of flies derived from individual males arising from mutagen-treated sperm and scoring 
eggs from brother-sister matings carrying the same putative mutation. We tested about 20,000 
inbred families in the generation that produces homozygous embryos and identified muta-
tions in 40 genes affecting the anteroposterior pattern and about the same number affecting 
the dorsal-ventral pattern (Fig. 3).

Mutations affecting segment number and polarity were particularly fascinating because 
of the strange and unexpected pattern defects displayed in the mutant larvae. Three classes 
of such mutations could be distinguished (Nüsslein-Volhard and Wieschaus 1980). First, 
there were five gap gene mutants that displayed large deletions in unique embryonic regions 
in a gene-specific manner. Mutants of the eight pair-rule genes showed pattern deletions in 
every other segment with different frames of deletions for each gene. The third class of mu-
tants, segment polarity mutants, displayed deletions associated with duplications in each seg-
ment. The possibility of grouping genes into classes suggested to us – who were unaware of 
their molecular function – that the segmented pattern was sequentially established. Initially, 
large unique regions were specified that guided the establishment of a first periodic pattern 
with double-segment periodicity. This pattern in turn was subdivided into fields of individual 
segments, each with its own pattern and polarity. Hans Meinhardt tried to incorporate the 
mutant phenotypes into a model assuming an activator peak at the posterior pole, based on 
the hierarchical induction of cell states, but this model did not fit the data very well – the un-
derstanding of the molecular interactions of the gene products had to wait for the molecular 
cloning of the genes.

6. Maternal Gradients

At the Friedrich Miescher Laboratory in Tübingen, my research group turned to mutations 
in those genes that affect the informational content of the egg. In parallel, similar screens for 
maternal mutants were performed in Princeton in the lab of Eric Wieschaus. Altogether, mu-
tants in a total of about 40 maternal genes that cause pattern defects in the embryo have been 
identified. The mutant phenotypes affect either the anteroposterior or dorso-ventral pattern, 
supporting the notion of their independent establishment. Strikingly, three classes of mutants 
sharing the same or similar phenotype in each class were identified to affect the pattern along 
the anteroposterior axis. Some displayed anterior defects (prototype bicoid), others lacked the 
abdomen with head and tail present (prototype oskar), and still others lacked only the terminal 
regions with the middle intact (prototype torso). Eleven genes shared the dorsalised phenotype 

3 Nüsslein-Volhard and Wieschaus 1980; reviewed in Wieschaus and Nüsslein-Volhard 2016.
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Fig. 3  Zygotic mutants affecting the Drosophila larval pattern along the anteroposterior axis. The figure shows the 
phenotypes of 20 of the 40 genes identified. For further explanations: Wieschaus and Nüsslein-Volhard 2016.

with dorsal, whereas mutants in the genes Toll and cactus displayed ventralisation, which 
suggests that they interacted to establish a gradient along the dorso-ventral axis (Fig. 4).4

To elucidate the functions and characteristics of each of the maternal genes, we performed 
cytoplasmic transplantations. These revealed that, in several instances, the phenotype could 
be rescued by the transplantation of cytoplasm from wild type embryos. Mutants in the gene 
bicoid were particularly fascinating; embryos produced from mutant females lacked the head 
and thorax entirely while the abdomen was still present (Fig. 4b). Hans-Georg Frohnhöfer, 
a graduate student in my lab, performed transplantation experiments and noted that the ante-

4 Reviewed in Johnston and Nüsslein-Volhard 1992.
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rior tip of embryos contained an activity that, when transplanted into bicoid mutant embryos, 
would rescue the phenotype. Following the transplantation of anterior cytoplasm to the middle 
or posterior egg positions, anterior structures developed in these regions. These experiments 
demonstrated the existence of a localised organising activity with a long-range effect on the 
embryonic pattern (Frohnhöfer and Nüsslein-Volhard 1986). The molecular cloning of 
the bicoid gene revealed that the bicoid mRNA is localised at the anterior pole of the egg and 
comprises the transplantable activity (Fig. 5). bicoid encodes a transcription factor. Wolfgang 
Driever showed that the Bicoid protein is distributed in an exponential gradient with a high 
point at the anterior tip and detectable levels well into the posterior region of the embryo.

This strongly suggests that the mRNA provides the source of the protein gradient spread-
ing by diffusion from the anterior pole (Driever and Nüsslein-Volhard 1988a). A target 
gene, the gap gene hunchback, is expressed at concentration levels above those reached at 
about 50 % egg length. Remarkably, changing the source density by varying the number of 
gene copies of bicoid demonstrated a dependence of the hunchback-expression domain on 
the Bicoid protein concentration (Driever and Nüsslein-Volhard 1988b). Bicoid works by 
controlling the transcription of several gap genes in a concentration-dependent manner. It is 
the first described morphogen and still provides an intensely studied paradigm of morphogen 
action, since, to this date, the molecular mechanisms of its production and function are still 
not completely understood (Wieschaus 2016).

 

Fig. 4  Maternal mutants affecting the Drosophila larval pattern: (a) wild type, (b) bicoid, (c) oskar, (d) torso,  
(e) dorsal, (f) cactus. For further explanations: Nüsslein-Volhard 1991.
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The investigation of the genes of the four classes revealed that, in each case, gradients of tran-
scription factors are produced from localised signals. However, in each case, the mechanisms 
of gradient formation and establishment of polarity are widely different.5 In two cases, the 
gradient source is a localised RNA, while in the other two cases it is an extracellular signal. 
In the case of the dorso-ventral pattern, for example, the dorsal gene, already identified in 
1979, produces a transcription factor that is evenly distributed along the dorso-ventral axis 
in the freshly fertilised egg. The Dorsal protein is taken up into the cleavage nuclei at the 
ventral side but remains in the cytoplasm at the dorsal side, resulting in a gradient of nuclear 
localisation of the morphogen Dorsal. The polarity arises from a signal outside the egg cell 
emanating from the follicle cells that surround the growing egg cell during oogenesis. The 
signal, the product of the spätzle gene, activates the membrane-bound receptor Toll at the 
ventral side, releasing an inhibition by the Cactus protein of the nuclear uptake of the Dorsal 
protein (Roth et al. 1989).

In summary, the spatial pattern of the Drosophila embryo along the anteroposterior axis 
is established by two gradients emanating from the localised RNA sources at the anterior and 
posterior poles. Additionally, two short-range gradients specify the head and tail end indepen-
dently. One gradient determines the dorso-ventral axis with a high point at the ventral mid-
line of the egg. In each of these systems, a cascade of interactions of several morphogenetic 
proteins are involved in the establishment of the gradients; however, the type of interactions 
formulated in the reaction-diffusion models do not seem to play a role in any of them. In par-
ticular, there is no evidence for lateral inhibition. These early morphogens are transcription 

5 Reviewed in Johnston and Nüsslein-Volhard 1992.

 

Fig. 5  Spatial distribution of bicoid mRNA, bicoid protein and hunchback mRNA. The left panel includes a hypo-
thetical second target gene expression with a threshhold more anteriorly.
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factors that control the activity of several target genes in a concentration-dependent manner. 
Further subdivisions occur through a cascade of activation and repression involving combina-
torial transcriptional control and concentration dependence.

This mechanism is possible because, in the early Drosophila embryo, the spreading of 
proteins is not impaired by cell membranes. In later stages, however, when the subdivision 
into the repeated pattern of about 14 segments occurs, cell-cell interactions via signalling sys-
tems are involved. In these cases, a secreted ligand spreads throughout the tissue and is taken 
up by a receptor in the neighboring cells to activate the transcription of target genes. This 
mechanism also works in other contexts, such as organ formation and patterning of the adult 
structures in the imaginal discs. There is a limited number of conserved signalling pathways, 
including Notch, Hedgehog, Wnt, EGF, and BMP. Most of the genes encoding these ligands 
and receptors were first identified in the Drosophila screens of zygotic patterning mutants.6

In cellular systems, it is difficult to measure the parameters of diffusion and stability. 
Therefore, the sole fact that models can simulate the outcomes of experimental manipulations 
is not proof of the underlying mechanism. Nevertheless, gradient systems based on reaction-
diffusion kinetics, in which proteins with different diffusibility interact with each other, have 
recently been proven plausible based on measurements of the physical parameters of the 
interacting molecules in the eggs of frogs, ascidians, and zebrafish. As a more general con-
cept, it seems that, in many systems, gradients emanating from opposite poles establish the 
initial conditions that polarise the tissue. They trigger transcriptional networks of activators 
and repressors, resulting in the correct positioning of boundaries defining distinct cell states.7 
Whether the morphogens in cellular systems spread by diffusion in the extracellular space are 
transmitted via a relay system or distributed along thin cellular protrusions called cytonemes 
is still a matter of controversy.

7. Summary and Conclusions

At the beginning of the 20th century, Boveri suggested that cell fates may depend on a 
graded distribution of some substance in the egg. In the 1920s, Spemann discovered an or-
ganiser region in the newt embryo that could influence its surroundings, whereby the distance 
from the organiser determined the fate of the cells. In 1952, Turing proposed a mathematical 
model to explain self-organisation from initially homogeneous states based on chemical inter-
actions. This famous reaction-diffusion (RD) model involves a slowly diffusing ‘morphogen’ 
interacting with an inhibitor molecule that easily diffuses. In 1969, Wolpert coined the term 
‘positional information’ and proposed a model of a gradient of a morphogen that elicits differ-
ent responses depending on its concentration. Crick (1970) calculated that a simple source-
and-sink model could work to establish linear gradients of morphogens inside an embryo. In 
1972, Gierer and Meinhardt proposed their gradient theory of local activation and lateral 
inhibition based on non-linear kinetics. Their model can explain many biological patterns. In 
insect eggs, mirror image duplications obtained after experimental manipulations point to the 
existence of gradients as determinants of the patterning of the long and short axes of the egg 
(Sander 1960). This view was supported by mutant phenotypes in Drosophila (Nüsslein-

6 Reviewed in Wieschaus and Nüsslein-Volhard 2016.
7 Reviewed in Briscoe and Small 2015.
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Volhard 1979). Systematic mutant screens in Drosophila and subsequent cloning of the 
genes have led to the identification of a large number of morphogenetic proteins.8

The gradient models of Meinhardt failed to explain the development of the early Dro-
sophila embryo because genetic analysis revealed a strong influence of localised maternal 
determinants rather than self-organisation. The first morphogen discovered was the product 
of the bicoid gene, a transcription factor produced by a RNA source localised at the anterior 
pole of the Drosophila egg. It spreads towards the posterior and activates target genes in a 
concentration-dependent manner (Driever and Nüsslein-Volhard 1988b, 1989). In cel-
lular systems, pattern formation depends on cellular interactions involving several conserved 
signalling systems in which ligands spread in the extracellular space and activate membrane-
bound receptors in target cells in a concentration-dependent manner. There is a limited set of 
such signalling systems that are highly conserved and operate in many tissues and, at several 
times, in the development of all metazoans.
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Systems Biology of Infection

 Marc Thilo Figge (Jena)1

Abstract

Infectious diseases are unique in their potential for explosive global outbreaks as well as for chronic impact on their 
human targets. Fungal infection rates have risen dramatically over recent years and are a cause of increased morbid-
ity and mortality, especially in patients with weakened immune systems. The excessive use of antibiotics contributes 
to the increased susceptibility of humans to pathogenic fungi, of which the ubiquitous fungus Aspergillus fumigatus 
and the opportunistic yeast Candida albicans are the most common types. Combining experimental and theoretical 
studies, systems biology of infection represents an interdisciplinary approach to describing and predicting in a quan-
titative manner the dynamic immune response to invading pathogens.

My talk is about modelling infections that may be life-threatening for people – people like 
the biblical figure Job, who had painful sores or boils from the soles of his feet to the crown 
of his head. He took a piece of broken pottery and scraped himself with it. Even today, we do 
not know exactly what disease he suffered from. Still, today we know of a condition called 
Job’s syndrome that is associated with a mutation in an important gene that is involved in 
lymphocyte differentiation and in the neutrophil chemotactic activity. Patients with a defect 
in that gene develop recurrent skin and respiratory tract infections involving not only bacteria, 
but also fungi. And it is such fungi that we are particularly interested in at the Hans Knöll 
Institute in Jena.

There are millions of fungal species, but only a couple of hundred are pathogenic for 
humans. And even these pathogens are mainly dangerous for immunocompromised patients. 
However, modern medicine is, in a sense, responsible for a growing number of immunocom-
promised patients due to interventions in the immune system associated with certain types 
of surgery – transplants for instance – or during cancer treatment. Under these conditions, 
infections can more easily take hold. Over the past two decades, the number of sepsis cases 
has increased significantly, and 5 % of all cases are caused by fungal pathogens. This may 
seem like an insignificant number, but these fungal infections are associated with a high rate 
of mortality due to limited means of diagnosis and therapy.

1. Two Prominent Fungi

The two most important human-pathogenic fungi are Aspergillus fumigatus and Candida 
albicans. A. fumigatus is the most ubiquitous airborne fungus. It lives in your garden, where 

1 Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena.
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it produces small spores of two to three micrometres in size. These are the so-called conidia 
that, when inhaled, reach the alveoli of the lung. Each day, you inhale between hundreds 
and thousands of these conidia, depending on how often you are in your garden. Once in the 
lung, the conidia are confronted with the innate immune response and are usually promptly 
removed. If they are not, they will swell, germinate and can cause invasive pulmonary as-
pergillosis. These infections are associated with a high mortality rate that is often due to late 
diagnosis.

The other widespread fungus is C. albicans. It is very likely that everybody in the audi-
ence carries this commensal that lives on human mucosal surfaces. It has a small diameter of 
three to four micrometres, but it can change its morphology. As a yeast, it is usually harmless 
unless it develops pathogenic hyphae that can penetrate the skin, which can cause superficial 
infections that are experienced by many people. Massive invasions are associated with a dis-
integration of the tissue. In the worst case, it can cause bloodstream infections and sepsis.

To study infections by C. albicans, whole blood infection models are used in which hu-
man blood is infected with C. albicans. Flow cytometry or killing assays show us that the 
number of free Candida cells strongly decreases after the initial infection. Certain immune 
cells in the blood called monocytes associate with Candida, for example by phagocytosis. 
But this effect appears to be quite small. In contrast, neutrophils, another type of white blood 
cell, will phagocytose Candida cells in increasing amounts. Figure 1 shows an example of 
this process of phagocytosis. 

Fig. 1  Candida glabrata cells (green) and neutrophils (grey) in a confrontation assay before (left) and after (right) 
phagocytosis.

2. The Purpose of Infection Modelling

Our central aim is to quantify mechanisms contributing to the killing of Candida cells in 
human whole blood. To do this, we create models for this assay and study ‘virtual patients’ 
in order to generate predictions for various manipulations of the conditions in that system. 
The strength of mathematical modelling for these kinds of problems is simplification, i.e. the 
reduction of complexity. What I consider to be the art of mathematical modelling is to find 
a model that is rich or complex enough to describe phenomena you are interested in while 
remaining simple enough to not become a one-to-one map of reality itself. In other words, 
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finding the mathematical approach in which your model incorporates all existing experimen-
tal data that can still be predictive. And then, perhaps after new experiments have been com-
pleted, you can extend the model with a kind of bottom-up approach.

3. A State-Based Model for the Candida-Neutrophil-Monocyte System in Human 
Whole-Blood

From experiments, we know that Candida cells can be phagocytosed (swallowed) by immune 
cells. Once a neutrophil swallows a Candida cell, it becomes more likely to begin swallow-
ing them even more often. Neutrophils can kill by phagocytosis or by releasing antimicrobial 
peptides that kill the Candida cells extracellularly. Candida cells, in turn, can escape the 
immune response and become ‘resistant’ to killing and phagocytosis. A whole network of 
interactions develops over time that includes the direct and indirect killing of Candida cells 
by neutrophils. In addition, monocytes can engage in phagocytosis of Candida cells in the 
blood. Thus, there are many states that the cells can exist in.

Consequently, we use a state-based model to describe this system. Transitions from one 
state to the next are described by rates, but we do not know the actual rate values. Therefore, 
we need to set up an algorithm that initialises the model with arbitrary parameters over and 
over again and then select those parameters that best describe the observed data. Figure 2 
shows a scheme simulated by a Monte Carlo model, an approach very well known in theoreti-
cal physics, that returns the values for all rates with low standard deviation. If you then fit 
these curves to the development of the actual number of Candida cells present in the blood, 
you see that they fit the experimental data nicely.

In addition, we can find out which intracellular and extracellular contributions of neutro-
phils and monocytes produce the observed numbers of killed Candida cells as a function of 

Fig. 2  The number of killed (CK: red) and alive (CA: green) Candida albicans cells for the human whole-blood assay. 
The width of this curve is a variation that you get within the standard deviation for the values of the estimated model 
parameters. This variation is small compared to the standard deviations of experimental measurements.
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time. This is information about the cell populations that are not directly accessible in the ex-
periment. As it turns out, the immune response mainly originates from the neutrophils when it 
comes to C. albicans infection. 67 % of Candida cells are killed intracellularly by neutrophils, 
30 % are killed extracellularly by antimicrobial peptides (a large number that was a surprise), 
and only 3 % are killed by the monocytes in human whole-blood.

4. Creating a Virtual Patient

Now that our model fits the existing data, we can start generating virtual patient data. Such 
data would be very hard to collect from real patients. The model correctly predicts that if a 
patient has neutropenia (lack of neutrophils in the blood), the number of killed Candida cells 
is reduced by 50 % and the number of Candida cells that are associated with neutrophils is 
strongly reduced, too. These are the typical signs in neutropenic patients who are experienc-
ing sepsis due to C. albicans infections. In contrast, in monocytopenia (lack of monocytes 
in the blood), the immune response stays strong, predicting that its response is not predomi-
nantly based on monocytes in the case of infections by C. albicans.

5. From States to Agents: Bottom-Up Modelling

One limitation of state-based model is that it neglects all spatial aspects. However, cells must 
meet in space and time before they can interact, and the diffusion of cells in blood is an 
important parameter for their activity. At this point, we can start building our model from 
the bottom up: We extend the state-based model to an agent-based model. This new model 
incorporates the transition rates derived from the state-based model. The agent-based model 
has migration parameters that are associated with the diffusion constants of monocytes and 
neutrophils. Now, cells really are objects that are moving in time and space. Figure 3 shows a 
typical simulation of one microliter of blood.

Again, we repeat these simulations many times over and over again to estimate the dif-
fusion constants that fit the data best. Interestingly, when estimating the diffusion constants 
for neutrophils and monocytes (Fig. 3), we find an optimal region that is elongated along the 
dimension for the monocytes. This illustrates how monocyte diffusion constants do not mat-
ter much for the outcome of C. albicans infections in whole blood. In addition, the diffusion 
constants of neutrophils must stay inside a small interval in order to fit the data. Thus, the 
agent-based model fits the same experimental data as the state-based model but includes the 
whole spatio-temporal complexity.

Keeping neutrophil diffusion constant while changing monocyte diffusion does not sig-
nificantly change the outcome. However, keeping monocyte diffusion constant and changing 
the neutrophil diffusion generates a condition resembling neutropenia, at about one fourth of 
the normal diffusion constant value, even though the patient has a completely normal total 
number of neutrophils. Still, this immune paralysis resembles the condition of neutropenia. 
We can now apply this knowledge to the treatment of patients with neutropenia. A virtual pa-
tient with a 75 % decrease of neutrophils is in light neutropenia. From our predictions, we get 
an idea of how the diffusion constant of the patient’s reduced number of neutrophils should 
be increased in order to get him into a safe regime where he can still cope with the infection.
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6. A Hybrid Agent-Based Model

Next, we could build up our model even further by incorporating a multi-scale approach, 
where the diffusion of molecules is modelled at the molecular level of cytokines. The result-
ing model is called a hybrid agent-based model. We have done this in the context of a different 
fungal infection.

Remember A. fumigatus: when its conidia reach the lung, they appear in the alveoli, where 
they are confronted with macrophages. We built a computer simulation of an alveolus that is 
equivalent to a real alveolus, i.e. this is a to-scale model. Based on this simulation, we can 
make predictions by performing numerical experiments that could never be done in the lung 
under physiological conditions.

In this model, we can let macrophages randomly search for conidia. The result is that on 
average, even after about one day, the macrophages will not find the conidia. This is a condi-
tion that cannot be very healthy, because after only six hours the conidia swell and start to 
germinate. With many simulations and different parameter sets we have shown that in 70 % 
of the cases the macrophages will not find the conidia in time.

Why is this so? In short, for the macrophages it is like finding a needle in a hay stack. The 
solution is not to search at random. Our model shows that with a chemotactic signal guid-
ing alveolar macrophages to the site of the conidium, the macrophage finds its way and at 
some point will locate the target. This can happen very fast indeed. How fast depends on the 

Fig. 3  (A): Neutrophils (blue), monocytes (orange) and Candida cells in different colours (green: alive non-resistant, 
red: dead non-resistant, yellow: alive resistant, grey: dead resistant). Red blood cells have been removed for vis-
ibility reasons. (B): Estimation of diffusion constants for monocytes and neutrophils by a grid search algorithm with 
automatic refinement.

A B
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properties of the chemokine. Thus, our hybrid agent-based model predicts the presence of a 
chemokine that is as of yet unknown.

Our simulations also can be used to screen several scales or several orders of magnitudes 
for the diffusion constant of chemokines and their secretion rate. They show that a low ratio of 
diffusion constant over secretion rate is required to ensure that the conidia are found in time. 
We would, of course, be interested in looking at not only one alveolus, but at an entire alveo-
lar sac, because these are the more or less independent building blocks of the lung. Today, 
however, this cannot be realised by agent-based models and requires a different modelling 
approach in order to cope with the increasing number of model parameters.

7. An Internal Conflict: Inflammation versus Infection

In reality, conidia are confronted by different levels of the immune system. For instance, apart 
from phagocytic cells there is also the complement system, which helps the innate immune 
response in recognising pathogens. Together, these parts of the immune system are always 
set up to counteract an increasing infection with increased inflammation. However, for ob-
vious reasons, it is always preferable to stay at the lowest possible level of inflammation. 
There is a conflict in the current literature concerning the role of macrophages with respect 
to this goal of keeping inflammation at bay. On the one hand, it is said that the impairment of 
macrophages is a risk factor for invasive mycosis. On the other hand, it is stated that they are 
actually not important.

We wanted to figure out whether our models could provide us with information with 
regard to this conflict. As it turns out, if the conidia are not in the resting state, they can be 
more easily recognised by the complement system. From this perspective, it would be better 
for the conidia to stay in the resting state. On the other hand, after the macrophages come in 
after an hour or so, they cannot deal so well with hyphae. So, from this point of view, it would 
be better to already be in the hyphal state at this stage. Because macrophages will phagocyte 
conidia when they are in the resting state, it would be an advantage to quickly change into the 
hyphal form. Neutrophils can deal with both forms, conidia and hyphae. At the same time, 
however, when they are recruited to the lung in large numbers they can easily harm the lung 
tissue itself.

Agent-based models for this problem would contain so many model parameters that we 
would not be able to identify their values in a responsible way. That is why we applied evo-
lutionary game theory. Game theory deals with decisions and choices of strategies in order to 
counteract some action. In evolutionary game theory, we only deal with relative statements 
like ‘this morphotype can be easier phagocytosed than the other morphotype’. In this manner, 
the number of parameters is strongly reduced, allowing us to derive some statements that are 
difficult to make by other means. The general outcome is this: The model appears to show that 
there actually is an important role for macrophages. They remain involved in phagocytosis as 
long as the infection dose is low. An everyday infection may not lead to the recruitment of a 
lot of neutrophils. However, if the infection dose is very high, for example ten, a hundred or 
a thousand times higher than the daily inhalation dose, then the response of the macrophages 
leans toward calling help for the neutrophils. Again, this neutrophil recruitment should by all 
means be avoided because ultimately, a sepsis patient may be suffering not as much from a 
pathogen anymore but from his own immune system going berserk.
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8. Short Summary

In summary, in systems biology we use mathematical modelling and computer simulation 
in combination with experiments. We can provide insights that are not accessible in lab ex-
periments. We can direct future research by generating hypotheses that can be tested. We can 
turn biomedical research into quantitative science. And we can, I believe, simplify real world 
complexity by taking bottom-up modelling approaches.

We investigated bloodstream infections by the pathogenic fungus C. albicans in human 
whole-blood and interpreted the data in a virtual infection model, quantifying the relative 
impact of immune cells during infection clearance. The virtual infection model was initially 
formulated as a state-based model (Hünniger et al. 2014) and was then extended to an agent-
based model by applying a bottom-up approach (Lehnert et al. 2015). This approach enables 
self-consistent modelling in which predictions are grounded on a comprehensive description 
of all available experimental data. In the context of an A. fumigatus infection, the strength of 
computational biology was demonstrated in a simulation of infection scenarios that are not 
accessible in wet-lab experiments today. We applied hybrid agent-based modelling to predict 
the migration strategy of macrophages in human lung alveoli (Pollmächer and Figge 2015) 
as well as evolutionary game theory on graphs to reconcile contradictory views on the role of 
these phagocytes depending on the infection dose (Pollmächer et al. 2016).

Despite all the achievements in systems biology of infection, it seems to be highly ques-
tionable that we can ‘control the world by modelling’, even when limiting this claim to ‘the 
world of a single infection patient’. Turning once again to Job, it becomes clear that, as a 
patient in his day and age and in his specific family situation, being infected by pathogens 
alone was only one of his troubles.
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Real Neuronal Networks: 
Resilience Despite or Because of Complexity?

 Wolf Singer ML (Frankfurt/Main)1

Abstract

Both man-made systems and biological organisms resist challenges that endanger their structural and functional 
integrity. In technical systems, error tolerance is usually enhanced by increasing redundancy: critical functions are 
implemented in multiple subsystems that operate in parallel. In living systems, resilience has been optimised by 
evolutionary selection. As a complementary strategy, organisms exploit the capacity of complex dynamic systems 
to self-organise. At first sight, it appears counterintuitive that increasing the complexity of a system would enhance 
its robustness. The brain serves as an example of principles that render an extremely complex system astoundingly 
robust, error-tolerant and resilient. The stability of other complex systems, such as economic, social, and political 
systems, may benefit from implementing the self-organising principles that evolutionary selection has identified as 
efficient.

Evolution has very consequently led to systems of ever-increasing complexity. The question 
is: why? Increasing one’s complexity may increase one’s autonomy: improving cognitive 
systems helps to upgrade internal models of the world and thus the coping strategies for dif-
ficult situations. Or, complexity may by itself increase the resilience of a system. Or, maybe, 
both answers could be true?

If the aim is to enhance the robustness of a system, there are two principal strategies. One 
is to increase redundancy – just to double or multiply critical components – which is a widely 
used strategy for technical systems, in airplanes for example. But recently, and in aviation as 
well, there is a trend to increase the complexity of control systems. Today, networks of micro-
processors are implemented that organise control of functions in a distributed way. As it turns 
out, this strategy is more robust than simply doubling the computers with each being devoted 
to all functions. The reason for this increase in robustness is the ability of complex systems to 
self-organise. If a processor drops out, the network reorganises and either fully compensates 
or shows ‘graceful degradation’ rather than an abrupt loss of function.

1. From Feed-Forward Networks to Reciprocally Coupled Modules

Over the course of evolution, we have seen a dramatic increase of complexity of the nervous 
system, in large part simply due to the increasing number of components. The human brain 
consists of up to 100 billion neurons. Its extreme complexity arises from the network of con-
nections between these cells. A basic architectural principle that these networks adhere to is 

1 Max-Planck Institute for Brain Research, Frankfurt (Main).
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distribution: functions are distributed across many centres and are interlinked. Most interac-
tions are reciprocal. This is a big challenge for model makers, because reciprocally coupled 
networks easily run away or die out.

It is important that these systems all have a flat hierarchy. The evolution of nervous systems 
started with linear and strictly feed-forward networks that generate predictable responses: the 
sensory layer transduces inputs from the environment, then a couple of intermediate neurons 
combine these inputs and feed them to the output level that generates a behavioural response. 
In a strictly feed-forward system, different functional states cannot superimpose and must be 
implemented in a serial manner. Also, due to the lack of memory, they cannot handle sequences 
very well. And due to the lack of reciprocal connection, they cannot self-organise.

Over the course of evolution and especially with the development of the mammalian cor-
tex, a completely new architectural principle emerged: the cortical module. The six-layer 
cortex consists of modules with a size of about one by one millimetre by two millimetres 
(in depth) each. These modules are repeated all over the cortex. Their coupling strategies are 
rather homogeneous. Their internal circuits are both feed-forward and reciprocal. Modules 
are coupled through reciprocal connections and constantly influence each other. One cubic 
millimetre of cortex contains about six kilometres of cable (axons). Each neuron, such as 
the pyramidal cell in Figure 1, communicates with up to 20,000 others and receives inputs 
from as many other neurons that can be immediate neighbours or live in far-off cortical and 
subcortical regions.

2. Evolution Sticks to Successful Principles

Evolution is extremely conservative. From neuronal ganglia in snails to the human cortex, 
the properties of nerve cells are conserved and are based on the exact same biophysical prin-
ciples. Evolution has also been extremely conservative with respect to the invention of new 
structures. Since the emergence of the cerebral cortex in lower vertebrates, no fundamentally 
new brain structure has emerged. Evolution has mainly scaled up the volume of the cortex 
and of the support structures that this computational system needs to function. So, more of the 
same makes all the difference, which is a characteristic of complex systems: new properties 
can emerge from increases in complexity.

In less complex animals, the path from sensory areas in the cortex to the executive centres 
is fairly short. As evolution proceeded, more and more modules were added, and new cortex 
areas were formed that were no longer directly connected to the outer world through the 
sensory or effectors channels and were instead connected to the already existing areas. The 
neurons in these new cortical areas mainly talk to other cortical neurons. It is a self-referential 
system with a huge number of re-entry loops, and the environment is only coupled into the 
system very loosely. One current idea is that this system is a hypothesis-generating system 
that contains an internal model of the outer world and uses this model for the interpretation of 
sensory signals and the programming of adapted responses.

The main difference between our next cousins, the great apes, and us is that our brains 
contain more neo-cortex. We know that the cortex is subdivided into many functional subdo-
mains. However, their internal computational processes are likely to be similar, irrespective 
of whether they are devoted to seeing, hearing, touching, or abstract coding. What differs is 
the structure of their respective input data.
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Fig. 1  A pyramidal cell (red) in the cerebral cortex

 A B 

Fig. 2  (A): Fiber pathways in the human brain. (B): Representations of polymodal objects. Non-local vectors of 
spatio-temporal relations between distributed responses. Black dots: Cortical areas processing tactile, auditory and 
visual information. The areas belonging to the limbic system attribute emotional connotations to the contents of the 
cognitive processes in such a system.

The distribution of cortical functions is reflected by the density of reciprocal connections. A 
staggering 70 % of all possible connections between the nodes of this network are realised. 
Neurons can send information to any other neuron via only a few intervening nodes, allowing 
for a mindboggling complexity of interactions. Figure 2 shows the result of tracing the con-
nections in a living human brain with diffusion tensor imaging and a graph of the connections 
between sensory areas of the cat cerebral cortex.
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3. Representing the World in a Distributed Network

Consider a system that looks exactly the same but is several orders of magnitude more com-
plex, such as the brain of a primate. If a human stands in front of a barking dog and touches 
its fur, myriads of neurons will be active in the visual system, representing different visual 
aspects of this dog. The same will be true for neurons in the tactile system, where specific ac-
tivity patterns arise as one touches the fur. At the same time, the auditory cortex will analyse 
the incoming sound waves of the dog bark. And the limbic system will attribute an emotional 
connotation: Is it a dangerous dog, is it a peaceful dog, do I have to run away or not? This is 
what is meant by distributed coding.

4. The Binding Problem

Where in this system is the dog represented? The answer is that there is no local representa-
tion. The representation of the dog is distributed as a very complex cloud of spatiotemporal 
activity patterns. This is not what our intuition suggests. Such coding strategies are very ver-
satile and economical but pose problems. One of them is the ‘binding problem’: If there was 
not only a dog out there, but also a cat, there would be two interpenetrating clouds of activity 
in this network. At any moment in time, some neurons will code for aspects of both the cat 
and the dog. So which neuronal response is bound to which cloud needs to be well-defined. 
Three decades ago, we obtained first evidence that the semantic relations between the neu-
ronal responses signalling the various features of the dog are recoded in temporal relations 
between the respective responses. Responses of neurons whose activity represents aspects of 
the same object are made coherent.

So apparently, the brain uses the option to align signals in time in order to bind together 
what belongs together. There is evidence that in certain diseases, like schizophrenia and au-
tism, this ability to bind distributed activity is disturbed. These patients bind contents that 
should be kept separate and vice versa.

5. Assuming Linearity in a Non-Linear World

We can, of course, only perceive, imagine, and comprehend what our brains allow us to per-
ceive, imagine, and comprehend. The brain is as much the product of evolutionary adaptation 
as any other organ in our body. The macroscopic world in which life has evolved is a very 
narrow slice of the world. Our sense organs only select information from the environment 
that is relevant to our survival. Accordingly, the heuristics our brain uses to understand the 
environment and the responses it generates are adapted to ensure survival and reproduction, 
not to discover an absolute truth.

Consequently, our cognition is most likely extremely restricted. We know that both our 
perceptions and probably also our inferred models of the world are limited by our cognitive 
constraints because our perceptions depend on prior knowledge stored in the brain and a 
priori expectations.

With this restricted cognitive tool set, our brain aims to predict the next state of our environ-
ment and the consequences of our interference with it. Assuming the dynamics of the world to 
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be highly non-linear would not allow us to derive any prediction about our environment. That 
is why our predictions are mostly based on the assumption of linear world dynamics. For the 
same reason, we assume that we can control the world. Indeed, our everyday experience seems 
to support this notion. Many processes in the world in which we evolved exhibit dynamics that 
have a low dimensionality and can be approximated with linear functions.

One consequence of this linear-mindedness is our poor intuition for complex non-linear 
systems. The design of artificial intelligent systems reflects our linearity-based approach: 
most of them have a serial feed-forward architecture. Even the very complex deep learning 
architectures follow this principle. This, however, is not the way nature has designed intelli-
gent systems! We also tend to construct social and economic systems based on the assumption 
that they should be hierarchical, exhibit linear dynamics and be controllable. Most business 
structures have a CEO at the top, and even our democratic governmental systems have prime 
ministers. We assume that these ‘deciders’ are endowed with a kind of meta-intelligence that 
allows them to control the hierarchy below them.

However, our confidence in top-down control is only partly warranted. Many systems 
we create in the world have exactly the same graph structure as the networks in the brain: 
they are highly reciprocally coupled, they have very high dimensional non-linear dynamics, 
and the predictability of the developmental trajectories of such systems is extremely limited. 
Since we have little intuitive insight into complex self-organising systems, we overestimate 
their predictability. Fortunately, however, complex self-organising systems are robust, and 
their exceptional resilience allows us to survive in them even if we do not comprehend their 
dynamics. So the question is: Can we learn from evolution how to enhance the resilience of 
our man-made complex systems? Are there general design principles that support robustness, 
error-tolerance, and stability?

6. Learning from Evolution to Trust Complex Systems

All living systems are complex. They are self-organising and exhibit non-linear dynamics. All 
of these systems are robust and fault-tolerant; that is how they have survived. The brain is the 
prime example because it is the most complex organ that we encounter in the living world, 
and it is amazingly robust and error-tolerant. Most of the time, its sophisticated structure de-
velops without major errors and minor lesions can be compensated.

7. Potential Design Principles for Robust Complex Systems

The brain’s connectome, which can be described as a comprehensive map of neural con-
nections, resembles a rich club architecture, and this architecture is adapted to real-world 
conditions by an experience-dependent developmental process. The connectome is shaped by 
epigenetic influences: connections are stabilised or destroyed depending on their functional 
validation. This process is complemented by adult learning. In this case, however, inappropri-
ate connections are no longer physically removed, but the existing connectome is modified 
functionally by learning and by modifying the efficiency of synaptic contacts.

This ability to constantly adapt to a changing environment is only possible because brains 
have something that many other man-made systems do not: central evaluation systems. These 
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systems reside deep inside the brain, supervise the global states of the brain and are able to 
distinguish between consistent and inappropriate states.

8. Stabilising Complex Architectures with Control Systems

These evaluative systems are phylogenetically old. And, as far as we can tell, all complex 
brains have such systems. They evaluate the consistency and the validity of activity patterns 
generated in the rest of the brain and they reinforce useful and consistent activity patterns 
with reward signals so that the likelihood of them reoccurring is increased. They do not have 
to know the semantic content of the details that are processed in the rest of the brain. All they 
should know is whether an activity pattern makes sense internally, whether it gives coherent 
solutions, and whether the behaviour that results from it is beneficial or harmful. The result of 
this evaluation is expressed by the release of neurotransmitters that permit subsequent adaptive 
changes of the connectome. Thus, they enable adaptive changes to the environment and make 
it possible for the self-organising brain to behave in a goal-directed manner. Without this con-
trol system, the brain would not know in which direction to evolve its functional architecture.

Evolution follows the same principle: complex organisms have behavioural dispositions 
that have been optimised due to natural selection. However, in this case the reward is not 
instantaneous but provided by survival and successful reproduction. Those who did not do it 
well simply died out.

9. Suggestions for Managing Complex Systems

Based on these observations in the nervous system of higher animals, how should we optimise 
the management of complex systems? First, we should create an architecture that supports 
self-organisation, including reciprocal coupling, distributedness, flat hierarchy and adaptivity, 
an important principle that is rarely implemented. Second, we should implement mechanisms 
for evaluation of global states to allow for the supervised adaptation and self-optimisation of 
interaction architectures. Third, communication systems need to be implemented that assure 
the reliable transmission of undistorted information among large numbers of nodes.

10.  The Emergence of New Qualities

The trend towards more and more complexity has an interesting spin-off. Rendering the in-
teraction architecture more complicated leads to the emergence of new qualities. It certainly 
looks like the brain has managed, by increasing its complexity especially in the cortex, to 
construct a high-dimensional dynamic state space for the storage of information, encoding, 
and fast retrieval of information. This has apparently led to the emergence of novel cogni-
tive functions such as abstract thought, the generation of symbolic codes and language, the 
development of a theory of mind, and ultimately self-awareness. Agents endowed with these 
cognitive capacities are in turn able to engage in the development of socio-cultural networks 
that led to the emergence of the immaterial social realities as John Searle called them ‘belief 
systems’, ‘attributions of mental and spiritual dimensions’, and ‘value systems’.
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In conclusion, whatever the reasons for the continuous increase of the complexity of the inter-
action networks of our biosphere, we certainly owe our existence to the resilience of complex 
self-organising systems. Applying the principles that underlie this counterintuitive resilience 
may well help us understand and manage complex systems of our own making. Finally, un-
derstanding the ability of complex systems to generate new qualities that are ontologically 
different from the building blocks may even help to explain, within a naturalistic framework, 
the emergence of particularly human phenomena such as our spiritual dimension.
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Autonomous Intelligent Systems in Robotics

 Wolfram Burgard ML (Freiburg)1

Abstract

During recent years, artificial intelligence, machine learning, and robotics have become key technologies for various 
applications including logistics, service robots, and self-driving cars. The fundamental techniques employed in the 
most successful applications rely on numerical approaches, which rely heavily on probabilistic or numeric represen-
tations and utilise large amounts of data to optimise their parameters. I will discuss recent solutions provided by the 
above-mentioned fields for building intelligent agents that, in certain cases, are even outperforming humans. I will 
argue that the sheer amount of available data combined with the appropriate algorithms means that we are now within 
reach of applications with great potential for assisting humans in their everyday life. Furthermore, I will discuss 
aspects of the ongoing digital revolution based on novel machine learning algorithms.

We are mostly interested in building systems that perceive their environment, create internal 
models (like our brain does), and generate goals and actions to achieve them. That is the basic 
definition of an intelligent agent. A robot is a physical agent, or a computational model that 
can live in the physical world. This type of agent could help us in our everyday life, assisting 
us with various tasks and duties. Realising a robotic assistant requires some form of artificial 
intelligence; these agents would first have to understand their environment in order to figure 
out what they should best do next.

1. What Is Artificial Intelligence?

Defining ‘intelligence’ is particularly difficult, and it is even harder to define what ‘artificial 
intelligence’ (AI) means. Today, the discipline of AI mainly focuses on rational thinking and 
rational acting. The research in the context of agents that think rationally is driven by the idea 
that agents who think rationally will also behave rationally. However, there are computational 
models that have no direct symbolic (i.e. rational) meaning but are rather sub-symbolic, such 
as several probabilistic representations of neural networks, which do not have interpretations 
that allow us to understand how the system reaches its decisions.

In AI research, most researchers are interested in building agents that act rationally, there-
by freeing them from computational architectures that can easily be interpreted by humans. 
Usually, these agents have some sort of performance measure they are trying to maximise, 
which would be equivalent to minimising error or failure. If the agent behaves optimally, AI 
researchers call it intelligent.

Whoever has a cell phone in his or her pocket carries around at least one AI. They come 
with speech recognition assistants we can talk to. Also, the key algorithm in navigation sys-

1 Albert-Ludwig University of Freiburg.
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tems was developed in the field of AI. Optical character recognition heavily relies on AI 
methods, such as pattern recognition and face classification. Sorting photo albums, ranking 
websites, and recommendation systems along the lines of ‘other people who bought this also 
bought that’ all involve an AI component at their core.

The reason for the current omnipresence of AI is its enormous success over the past couple 
of years. And it is becoming more and more successful. Not only software agents, like the ones 
in our cell phones, but also physical agents like robots are now beginning to enter many areas 
of our daily lives. Other popular applications of AI are computer games and strategy (e.g. chess, 
checkers) or combat games. Combat games in particular make heavy use of AI-based technol-
ogy: If the agent needs to get from A to B, they apply the very same algorithm that is running in 
the navigation system of your car to find the best path. Indeed, some AI systems now outperform 
humans. A few years ago, for instance, the expert system IBM Watson won the game show 
Jeopardy. Watson can store and analyse about 2×108 pages of text from the internet. It is a bit 
like the Drosophila of AI as it evolves in the direction of human intelligence.

2. The Deep Learning Revolution

Today, the major conferences in artificial intelligence, machine learning, and pattern recognition 
are dominated by deep learning and deep networks. This combination of big data and high-
ly parallel computing architectures has rendered decision making or segmentation for image 
analysis by neural networks much more powerful than any previous technology. The methods 
of deep learning, implemented in deep neural networks, have become enormously powerful. 
Last year, an event took place that left me stunned: The AI ‘Alpha-Go’ played against a hu-
man world champion in Go and won. Alpha-Go is mostly based on big data and deep learning, 
implemented in large artificial feed-forward neural network. So how do these networks operate?

The lowest layers of multi-layer deep networks learn relatively simple features of input 
data, such as black-white transitions, corners, or edges in the case of images. The higher you 
go in these networks, the more invariant the responses of the nodes will be: for instance, the 
nodes in higher layers of a deep neural network trained on facial recognition will start re-
sponding to images of different faces from different angles as a form of image compression. 
In some cases, we can visualise what a network has learned. If you run a network on YouTube 
cat videos, what you might get are ‘cat neurons’ that best respond to the most representative 
cat face in the videos (see Fig. 1).

3. Robotics

One of the most intensively discussed aspects in robotics these days is autonomous cars. In 
this realm of robotics, virtually every aspect is ‘AI complete’, meaning that in order to solve 
a particular problem, the system needs to understand how the world around it works. For this 
very reason, robotics is an extremely complex science that faces enormously hard challenges. 
Even vacuum cleaners, like those you can buy in a home supply store, are running AI algo-
rithms (apart from the simplest models that just move randomly). The better models employ 
dedicated algorithms to systematically clean the floor. Some use AI-based algorithms that are 
also used to develop self-driving cars, such as Google’s car.
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You may wonder why the Google car does not simply use GPS to figure out its position. One 
of the major challenges of autonomous driving is to be sufficiently accurate; for example, to 
remain in a specific lane. GPS is typically not accurate enough for this. Therefore, the Google 
car, for example, uses range scanners installed on the roof of the car to localise the vehicle.

4. State Estimation

Based on the incoming data, Google’s car employs state estimation and utility maximisa-
tion algorithms, methods that are at the heart of all of robotics. The so-called particle filter 
is a highly parallel algorithm that generates a hundred thousand hypotheses as to where the 
vehicle might be located and then uses a ‘survival of the fittest’ mechanism to figure out the 
most likely hypothesis.

Once the particle-filter algorithm has gathered enough information to resolve the ambigui-
ties, it provides a highly accurate estimate about where the Google car (or any other robot that 
implements it) is located with respect to its immediate environment. The same algorithm can 
also be used for accurately localising robots designed to navigate with very high accuracy on 
factory floors. Please note that this algorithm can also deal robustly with ambiguities. It can 
directly represent them and support decision making in cases of uncertainty. Even in highly 
ambiguous situations, the robots can still make rational decisions about where and how to 
move, which is particularly hard for humans.

5. On-the-Fly Map Generation with Particle-Filter Algorithms

The robotic systems described above all employ some kind of map. One of the major chal-
lenges in robot navigation is how to build such maps. The robot must know what the environ-
ment looks like and where it is in this map. This can be a problem the robot needs to solve 
when it enters an environment for the first time or when the environment has changed.

Luckily, in order to generate a new map, you can feed this data into the same state esti-
mation algorithm as the one used for localisation with about 10,000 hypotheses. With this 

 
A B 

Fig. 1  Visualising what a network has learned. (A): Top stimuli of the test set. (B): optimal stimulus (‘cat neuron’). 
(https://googleblog.blogspot.de/2012/06/using-large-scale-brain-simulations-for.html)
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approach, a robot can maintain a probability distribution about where it is in its environment 
and what this environment looks like. This approach has turned out to be enormously robust 
in allowing robots build maps of large-scale environments and even very complex settings.

6. Optimisation

Recently, mapping has also been achieved with optimisation-based approaches, which have 
turned out to be a powerful alternative concept in AI and robotics. In an optimisation-based 
mapping problem, one tries to find the most likely map of the distribution out of all potential 
maps of the environment. The key idea is to think about the problem as a kind of a mass-spring 
system that converges to a minimum energy configuration after a certain time. This technique 
is applied to generate the maps that can be accessed with smartphones and computers today.

When applying the optimisation-based mapping algorithm to large parking structures, we 
can get a certain map and think about interesting alternative applications like autonomous 
parking. These methods of autonomous positioning and mapping are not only relevant for 
autonomous cars, but also in logistic processes. One application is the production process for 
the Boeing 777 fuselage.

7. Maps versus Features

In summary, on the one hand we have seen huge successes by deep neural networks in figur-
ing out high-level features with very variable input data. On the other hand, there are state 
estimation algorithms for autonomous navigation. It is an interesting and still open question 
as to whether robots need highly accurate maps in order to perform accurate navigation tasks 
or whether a neural network could learn features to take over that task as well.

Two weeks ago, one of my students demonstrated a robot with a deep neural network 
that learns how to navigate. She trained the network to generate the next action out of the ten 
most recently perceived observations. For each target location, we calculated the optimal path 
towards it, let the robot run along that path, and trained the deep neural network to process the 
incoming sensory data. Our hope was that by doing this repeatedly, the robot would learn to 
navigate all target locations without explicit internal representations.

Our network can learn the optimal path from the current location to the target, but it can 
do even more. The robot with a larger window and the same neural network implicitly learned 
how to navigate around in our building. This can also be done based on laser range scans, like 
those performed by the device on the roof of Google’s car. Our hope is that we can ultimately 
free autonomous navigation systems from requiring a map and allow them to arrive at com-
pletely sub-symbolic representations.

8. Applications for Representation-Free AI Systems

Another recent trend is to directly connect robotic devices to the human brain. For example, 
in the Cluster of Excellence BrainLinks-BrainTools, we are building brain-controlled robots, 
i.e., robots that can be controlled by thoughts, for example as an aid for paralysed people (Fig. 
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2). Here, we also use neural networks to classify brain signals and apply such techniques to 
identify imagined arm movements. These signals can then be used as go-signals, for instance 
in a feeding task. In addition, and this idea may sound pretty scary, one can also think of ro-
bot-controlled brains, i.e. robots that send signals to your brain. In fact, people from the ‘Life 
Hand Project’ have already built a prosthesis that communicates with the nervous system in 
the arm, which in turn sends signals to the brain to re-establish the sense of touch.

Fig. 2  By using neural networks to classify brain signals (lower right window) and applying such techniques to iden-
tify imagined arm movements, one can use these identified brain patterns as go-signals to a brain-controlled robot.

9. Big Data

Very often, people are concerned about big data and how their data is being used by compa-
nies that provide services to us. The typical situation is that these services are helpful to us 
and at the same time profitable for the companies. One example is called crowd sourcing. 
In the context of navigation systems, the companies track all the positions of all cars and all 
their velocities. Based on the velocities, a centralised system can estimate the time we need 
in order to reach our destination and re-route us in a potentially better fashion. Applications 
like these only work if people are willing to share their data. And it is a decision that we as 
a society have to make as to whether we want such benefits by providing the corresponding 
information.

In summary, AI and robotics have changed a lot in recent years and they will keep chang-
ing. Big data and computational architectures in combination will provide us with new solu-
tions and features that we can use to make our everyday lives better.
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Discussion of Session 2

Guest: Professor Singer, you described ‘moving from simple to complex’ as an evolutionary 
principle. While this may be true for the brain and many organisms, I wondered whether 
this is true for nature in general, because there are also organisms that simplify, like para-
sites. Obviously, there must be a boundary beyond which no further simplification is pos-
sible. Could you comment, please?

Singer: I am unfortunately not an evolutionary biologist, so I lack examples, but I would 
imagine this: what looks like simplification, is increased specialisation. However, I am not 
educated enough in this domain to give a definitive answer.

Guest: I think that from a scientific and technological point of view, these robots are fascinat-
ing. But I like driving! I do not know if I want to live in a world where robots are working 
in my place and are walking through the streets. What would be left for us to do if robots 
were taking over everything?

Burgard: They are already taking over certain aspects today. Think about airplanes: nowa-
days they are basically robots. I like the saying: ‘The best you can do, when you enter 
an airplane is to ask the pilot to get off’. Because when you look at it, most of the recent 
accidents were due to pilot error. And there is only around one single case where the pilot 
rescued the plane. A member of the team that is building the self-driving car at Google 
once said: ‘The most unreliable aspect of a car nowadays is the driver’. So the idea is to 
make our world a better and a safer place.

Guest: Wouldn’t an increased presence of robots cause more problems, like people not talking 
to each other anymore?

Burgard: Why would that be the case? If you sit in the car that drives for you, you can talk 
to your fellow passenger and maybe to other people on the phone.

Guest: Yes, but if a robot brings me all my stuff, I cannot talk to him. If a person brings me 
my stuff, we can have a chat.

Burgard: I, for instance, have Amazon Echo at home and from time to time I talk to it – she 
is always friendly, by the way – which does not say anything about my wife. She is also 
always friendly.

Singer: Are these systems truly autonomous or do you have to have a huge computer some-
where and a wireless connection in order to do all this programming and deep learning? 
Because if that is the case, which I think it still is, then you are in trouble: you cannot 
afford a transitory disconnection. So, unless you achieve intelligent systems that are por-
table and energy efficient, like the brain, for example, things will become difficult.

Burgard: Yes, autonomous cars have computers installed that do the computations offline. In 
the very beginning, those were entire computer racks. Today, they are the size of a pizza 
box. However, most of the learning still happens offline, and improved classifiers are 
uploaded to the cars remotely. Like on your smartphone – you get an update for your car.
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Friederici: So we can observe outcomes of a system like robot drivers. But this does not tell 
us anything about the underlying algorithms. I was wondering whether anyone in robotics 
would take up the idea of learning from the biological system, or is this so far off that you 
would rather say: ‘We do our own thing’?

Burgard: Right now, people are returning to architectures that you find in biology. Deep 
networks in particular are a rough approximation of the brain’s architecture and they are 
computationally very, very powerful. These architectures are also found in biological sys-
tems. Deep neural networks were already being explored some 20 years ago. The major 
change is that today we have an enormous amount of labelled training data. We would 
love to have computational architectures that are more like the brain. Maybe we could 
connect neurons in the very same way, but we do not yet have algorithms for training 
networks of that kind.

Singer: Yes, training algorithms exist that are physiologically plausible. But there has not yet 
been hardware implementation of a use-dependent plastic synapse. 

Burgard: Also, microscopic aspects of brain, such as synapses, cannot be modelled accu-
rately. What we are using are all very rough approximations.

Guest: I think that, with your talks, we are moving towards the interdisciplinary part of the 
workshop. Also, this was the first time that I really saw a transition to social science ques-
tions. Mr. Singer, I was wondering whether you are also working on literature from or-
ganisational theory and sociology, particularly about flat hierarchies and resilient systems. 
These principles are now being applied in building organisations. Google, for instance, 
hires very highly trained people who self-organise all the way. There is not that much hi-
erarchical structure anymore. Do you see more of those developments and do you interact 
with sociology and social sciences in that regard?

Singer: Only very loosely. Every now and then when I give talks, I discuss these questions. I 
realise that the confidence in flat hierarchies increases because of the failures of top-down 
control. When I talk to business advisers who make a huge amount of money by shaking 
the structure of an organisation, I realise that their concepts are pretty loose most of the 
time. And when I ask them: ‘What are you doing that justifies your high salaries? What 
is the point of it?’ they say: ‘It is not that we have a recipe of how to produce a stable 
situation, or a resilient system, but it is just shaking it, like introducing a mutation and 
then leaving it to a Darwinistic process to select the good parts. But this shaking process 
requires enormous efforts due to the inertia of established routines’.

Guest: My second question is about autonomous driving. We live in a society, and one basic 
principle of how we interact is responsibility: We are being held responsible for our ac-
tions. So, who is responsible when an algorithm drives the car? The algorithm? Or is it the 
human being who programmed the algorithm? Algorithms have busted a lot of money in 
the financial markets. I think that is a question where the social sciences and the natural 
sciences meet. Can you please comment on that?

Burgard: Yesterday, I had a discussion with law scholars, and one of them had the opinion 
that someone always needs to be held responsible. Currently, the responsibility stays with 
the driver at all times. That, however, would not change the reality of driving; we would 
be constantly anxious about the car making mistakes. Of course, if there were no cars, car 
accidents would not happen, and we would save many lives. So, as a society, again and 
again we transform the tools we use and the risks we are willing to take. One solution to 
the problem is not to impose responsibility on the driver unless he makes a mistake. Think 
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about it: by using autonomous cars, we could reduce the number of fatalities by 50 %. Is 
that something we want? If the answer is yes, we could, for example, leave the respon-
sibility with society itself. This is happening. For example, my university is not allowed 
to buy insurance. So whatever damage the university causes is paid for by the state. This 
could be a solution to solving this problem.

Guest: What I found quite interesting was the supervision or evaluation system. You explic-
itly said that it does not take any kind of external factors into account, so it evaluates the 
internal consistency. And I just wondered, is there some internal logic that, if violated, this 
system would report? If so, what does that logic look like?

Singer: The brain, of course, needs to know when it has reached a solution. And it needs to 
distinguish the solution from the computational history. It can only learn if it has a consis-
tent solution state. There must exist some measure of consistency in the brain. We do not 
yet know what the signature of a result is.

 Still, the evaluation systems must be able to read this signature. They must recognise that 
the brain is now in a state that is equivalent to a solution. Now you can print and now you 
can change the synaptic weights. It is likely that a reward is associated with this signal. If 
it happens, you feel good; if it doesn’t happen, you know there is still a conflict between 
competing drives and you feel uneasy.

 This internal consistency test is one aspect of the evaluation system. But there are subsys-
tems that compute prediction errors. They know from experience and from past heuristics 
what is supposed to happen if you do this or that. If you do something and the reward is 
lower or higher than expected, this system comes into the play. It will then change the 
state of the system by modifying the synaptic weights. So it does not have to know about 
what the reward was for. All it needs to know is whether the prediction is confirmed by 
what happens. And it favours states that converge towards those predicted states that are 
associated with the highest rewards.

Lengauer: Now I am a bit confused, because on the one hand, you very convincingly said 
that the brain does not have a central organiser, but this evaluation system sounds very 
much like a central organiser.

Singer: No, it is not. Because it has no knowledge about detailed processes. It never decides 
anything. It does not know whether a consistent brain state has been achieved because you 
made an elegant arithmetic calculus or because you happened to do a consistent motor act, 
like skiing. It is blind to the contents. It only evaluates states. So it is not like a chancellor 
or a CEO who would have to know this: I do X in order to achieve Y. No, it finds out post 
festum whether what has happened is consistent or not.

Lengauer: So it only observes.
Singer: Yes. It doesn’t need to be very clever. It needs to be able to evaluate states.
Friederici: I found the aspect of the brain being so tolerant to damage very interesting. I 

was wondering how robots would achieve this. During learning, are they error-tolerant? 
Or later on?

Burgard: You can gain robustness against failure by redundancy. We are not talking about 
three copies like with airplanes, but maybe 10,000 or 100,000 copies instead. But then, 
these architectures for learning have a well-known theory behind them. So we can evalu-
ate how robust they are and how we can increase their robustness. For example, cross-
validation is a technique where you evaluate how robust a classifier is relative to unseen 
examples.
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Friederici: When we look at the development of the human being, what we see is that, very 
early on during development, the system is more tolerant of errors than it is later on. Do 
you have an explanation for this?

Singer: Well, embryos and newborns are extremely tolerant of oxygen deficiency because 
the system is tuned to resist that risk during birth. Later, they have a lot of degrees of free-
dom in order to compensate. We investigated a young girl that came to us when she was 
14 years old. To our great surprise, we found that she was lacking an entire cerebral hemi-
sphere. The thalamus, the striatum, everything was lost on one side. Just the brain stem 
and one hemisphere were left. The girl had a nearly normal visual field. She must have 
lost the Anlage for the second hemisphere at the embryonic stage of about three months. 
This caused the optic nerves to re-route when they grew into the brain, to map into the 
one hemisphere left. So, new maps formed in that hemisphere. She was also perfectly fine 
with respect to motor abilities. She could roller skate, she could bicycle, she had a normal 
IQ. She was a little bit clumsy with the fine control of the hand contralateral to the miss-
ing hemisphere. She was unaware of this malformation, and she probably still does not 
know about her ‘problem’. Her example shows how efficient these self-organising error-
correcting forces are during development in biological systems.
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Host Microbiome Interactions in 
Health and Disease

 Eran Elinav (Rehovot, Israel)1

Abstract

The mammalian intestine contains trillions of microbes, a community that is dominated by members of the Bacteria 
domain but also includes members of Archaea, Eukarya, and viruses. The vast repertoire of this microbiome func-
tions in ways that benefit the host. The mucosal immune system co-evolves with the microbiota beginning at birth, 
acquiring the capacity to tolerate components of the community while maintaining the capacity to respond to invad-
ing pathogens. The gut microbiome is shaped and regulated by multiple factors, including our genomic composition, 
the local intestinal niche, and multiple environmental factors including our nutrition and bio-geographical location. 
Moreover, it has recently been highlighted that dysregulation of these genetic or environmental factors leads to aber-
rant host-microbiome interactions, ultimately predisposing hosts to pathologies ranging from chronic inflammation, 
obesity, the metabolic syndrome and even cancer. We have identified various possible mechanisms participating in 
the reciprocal regulation between the host and the intestinal microbial ecosystem and demonstrate that the disruption 
of these factors in mice and humans leads to dysbiosis (microbial imbalance) and susceptibility to common multi-
factorial diseases. Understanding the molecular basis of host-microbiome interactions may lead to development of 
new microbiome-targeted treatments.

1. Studying the Microbiome

This talk is entitled ‘Host Microbiome Interactions’ because 2016 is an era in which, for the 
first time, we can accurately measure the biggest set of variables that determine our individu-
alised response to food, including genetics of the host. Our individual genetics and lifestyle 
have an important effect on our glycemic responses, which is the effect that food has on blood 
sugar (glucose) levels after consumption. But the most interesting and poorly understood fac-
tor of all is the composition and function of our gut microbiome.

The microbiome is a huge and complex, but poorly understood microbial ecosystem that 
resides within every one of us from the moment we are born to the moment we die. This 
microbial ecosystem consists not only of trillions of bacteria and thousands of different mi-
crobial families, but also of hundreds of types of viruses, fungi, and parasites. They basically 
form a world within a world inside each one of us. During the last eight years, this very young 
field of research has demonstrated that the microbiome has a fundamental impact on almost 
every aspect of our physiology.

A scanning electron microscope photo (Fig. 1) taken from a normal small intestine with 
a 160,000-fold magnification shows heels or bumps lining epithelial cells of our gastroin-
testinal tract, the home of the densest and most diverse microbiome we host. On top of the 
epithelial cells lining the intestine sit bacteria that look like a carpet of shoe laces, composing 
the healthy microbiome environment.

1 Weizmann Institute of Science, Rehovot (Israel).
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Fig. 1  Microscope photo taken from a normal small intestine with a 160,000-fold magnification.

One of the themes of this meeting is complexity. In fact, the microbiome – especially the 
gut microbiome – is one of the most complex biological systems, and we are just starting to 
comprehend it. Until eight years ago, science knew that many bacteria live inside our body, 
but we had no way of studying them because most of these bacteria cannot be cultured un-
der normal conditions. One of the consequences of the Human Genome Project, finalised in 
2001, were technological breakthroughs that finally allowed us to sequence huge chunks of 
genomic data. Using these approaches, called next generation sequencing, we were able to 
study the microbiome for the first time and start understanding what it does and what is so 
important about it. We were quite shocked to see that there about as many microbial cells in 
our body as we have own body cells and that we carry about 150 times more microbial genes 
than human genes within our body. While we know a lot about the 20,000 genes that compose 
our eukaryotic body, we know almost nothing about the three million microbial genes that are 
part of us and greatly impact us.

2. The Microbiome: A Physiological Layer of Great Complexity

You can imagine the microbiome as a ‘neglected organ’. It is a signalling hub that integrates 
many signals originating in various parts of the organism. Some of these signals come from 
the eukaryotic part; for example, our individual genetics and immune system have a great ef-
fect on the microbiome. Also, almost any environmental factor that surrounds us affects the 
composition and function of the gut microbiome. The microbiome integrates and processes 



Host Microbiome Interactions in Health and Disease

Nova Acta Leopoldina NF Nr. 419, 75 – 82 (2017) 77

all these signals, interacting with the host – and it’s these interactions which researchers now 
believe are important in determining our state of health and our risk of developing common 
multifactorial disease.

Looking into the leading scientific journals of the last couple of years, you will see that 
alterations in the composition of the microbiome have been linked to almost any common 
multifactorial human disease. It is the biggest challenge for us to investigate the mechanisms 
underlying these perturbations. This will take a lot of effort, and I will give you one example 
of one of our very recent projects illustrating how we can harness the huge amount of big 
data that we take from our microbiome in order to determine its impact on common diseases.

3. The Obesity-Diabetes Epidemic and Our Dieting Failure

The disease that I am mostly going to talk about is obesity, one of the worst epidemics in 
human history that affects billions of people worldwide. During the last 20 to 30 years, there 
was a huge increase in the prevalence of obesity in the United States, Europe and in East Asia, 
especially in China. The rapid pace of the epidemic implies that environmental factors are the 
major driving force. At the same time, there has been a rise in closely related diseases such as 
diabetes, estimated to affect half a billion people worldwide today. The predisposing disease 
called pre-diabetes even impacts up to 40 % of the adult American population and over 50 % 
of the adult Chinese population. 50 years ago, this disease did not exist in China.

Nutrition affects the gut microbiome within our gastrointestinal tract, the first stage to 
interact with our diet. This interaction affects metabolism in health and disease. I will show 
you how we can harness big data-driven approaches to decode this highly complex biological 
system in order to develop rational interventions in common multifactorial diseases such as 
obesity. Many people attempt to change their metabolism by intervening in their nutrition. 
When you look at the overwhelming data regarding different diets, you can see that they work 
in the short term. In the long run, however, the vast majority of people regain their weight and 
often even more weight than what they started with.

So, we asked: ‘Why, despite all the effort and the huge amount of money that our society 
invests in our dietary attempts for the last 30 or 40 years do we fail so miserably?’ The basis 
for what we address in nutrition today is rather boring nutritional studies from the 1970s and 
1980s which resulted in giving food a grade or a score. Based on these grading systems we, 
physicians, dieticians, or the books at the airport basically try to build diets that are supposed 
to be good for us. The calories are one grading system which gives a number to any food on 
earth. So, we use combinations of foods based on this grading system to build a diet.

A more commonly used grading system than calories in the nutritional world is called the 
glycaemic index, which assigns gives grades to foods based on how much they raise our blood 
sugar levels. The glycaemic index is based on a very small number of studies from the 1970s 
in which ten to 20 human individuals were given identical food and then their blood sugar 
levels were monitored for a two-hour period. For example, if these ten people were given an 
identical piece of celery, their average blood sugar levels rose about 40 % within 15 minutes 
and went back to normal within two hours, resulting in a glycaemic index of about ten. Now 
if the same group of people were given an identical piece of chocolate cake, the average rise 
of their blood sugar levels was much higher, like 90 %, resulting in a glycaemic index of about 
60. There are many, many charts on the internet with glycaemic index scores for any food on 
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earth. When you go to your dietician or your family physician or if you buy a book, there is a 
very high chance that your new diet will be based on these sets of glycaemic indices.

4. Individual Responses to the Same Food

When you do this study not on ten but on 1,000 people – like we have done – you will see that 
individual differences in the glycaemic responses can be huge. For example, when we gave 
an identical amount of glucose or bread to 1,000 people, the average was exactly the well-
known glycaemic response of glucose or bread. However, while some people eat sugar and 
their blood sugar levels do not spike at all, they rise to diabetic levels in others.

Therefore, the average response to certain kinds of food does not predict the individual 
response. This variability, which we have seen in several different kinds of food, really limits 
the applicability of the glycaemic index as an average. This tells us that the concept of fol-
lowing a one-size-fits-all diet cannot be effective. So, our goal is to develop a personalised 
approach to dieting.

In contrast to classic diets, such as those mentioned above, our approach could lead to 
tailor-made diets that actually work. The basis is a large-scale study which we performed as a 
strategic collaboration with my friend and colleague Eran Segal, a mathematician heading a 
large group at the Weizmann Institute, which we started around four years ago. For this study, 
we recruited participants online. Even though we never publicised it, by the end of the study 
close to 20,000 people were on the waiting list. Once a candidate was admitted to participate, 
we asked them to let us perform tests on them for a week. First, they filled out a large body 
of questionnaires on their medical backgrounds, their family history, their dietary preferences 
and so forth. We analysed their host genetics and performed an array of blood tests. And, of 
course, we took stool samples that were deeply analysed (in-action sequencing) for composi-
tion and function of the participants’ gut microbiomes. Finally, we connected each participant 
to a glucose monitor that sits on the skin and takes samples of blood sugar levels every five 
minutes.

During this test week and the following week, the ‘follow-up week’, the monitor would 
collect a total of 2,000 blood sugar measurements. In addition, we gave each participant a 
smartphone app specifically designed for this project. They used it to tell us everything they 
did during the follow-up week: what they were eating, how much of it, when they were wak-
ing up, when they were going to sleep – as much information as possible.

After the conclusion of the follow-up week, we created a ‘mirror image’ for each partici-
pant, an overview of their habits based on their smartphone diary entries. We also gave people 
a very detailed analysis of their gut microbial frames. Most participants were really surprised 
by their own mirror image, a testament to the fact that we experience our own bodies very dif-
ferently compared to external observers. And we were pleasantly surprised to see how quickly 
people got emotionally attached to their gut microbes.

Most importantly, a couple of weeks after the completion of the blood sugar measure-
ments and app reports, a large, talented, and smart group of computational biologists – stu-
dents and post-docs in both of our groups – took this unprecedented amount of big data and 
devised a machine learning algorithm that trained itself to predict the participants’ individual 
physiological responses to any of the foods they had been exposed to. So far, we have pro-
filed over 1,000 people, studied individual responses to over 50,000 meals and analysed over 
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two million blood glucose samples. In addition, we sequenced over ten billion meta-genome 
reads. This is the largest study of its kind to ever have been performed.

If we look at the statistics of this one cohort – the Israeli cohort – we see how their profile 
resembles what we find in populations of developed countries all over world: 50 % of the 
people are overweight, 20 % are obese, and 25 % are pre-diabetic. Pre-diabetic individuals 
form a very important sub-set of society: they already feature disturbances in their blood 
sugar maintenance but they are not yet diabetic. However, they have a 70 % chance of devel-
oping frank diabetes within ten years of the diagnosis. We really have no way of controlling 
the progression of this condition. From my previous experience as a physician, I can tell you 
that when these people come to our practice, we basically have nothing to offer them. We tell 
them to exercise and to lose weight, but they never do it.

The microbiome was a central part of the analysis of the Israeli cohort. Figure 2 shows the 
results of a comparison of the microbiome in people from different parts of the developed word.

Fig. 2  Principal components analyses of microbiome distribution. Each dot here represents one person. Colours and 
symbols represent different cohorts. Dots that are very close to each other represent individuals with a very similar 
microbiome. Dots that are very far away from each other represent individuals with very distinct microbiomes. The 
result of the analysis represents each person’s microbiome (one dimension per component) in a diagramme with only 
two dimensions. It shows that the composition of the microbiomes collected in the Israeli cohort overlaps greatly 
with microbiomes collected in studies in the US or in Europe.

We tested whether the other information that we collected from our cohort, i.e. the interac-
tion of glycaemic response and body mass index, corresponds to well-known results from 
other studies.

We expected from those studies that the more obese people were, the higher their overall 
glycaemic response to foods would be. And that is exactly what we found in our cohort. The 
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same direct correlation was also found with the haemoglobin A1c, wake up glucose and age – 
the older you are the higher your average glycaemic response. We also found an inverse cor-
relation with the ‘good’ cholesterol (HDL). All these were checks aimed at ensuring that our 
participants were not altogether different from participants in previous studies.

In this study, we performed only a single intervention: we asked each individual to eat a 
breakfast that we gave them after a night-time fast each morning of the seven days of follow-up 
period. This allowed us to give an identical breakfast that would allow us to directly compare 
the entire 1,000-person cohort. The breakfast included identical pieces of white bread in two of 
the days, bread plus butter on two other days, sugar on two other days, and fructose on one day. 
The average glycaemic response to any of these test foods was exactly the glycaemic index of 
that food, but the variability in the response across participants was huge. Figure 3 shows on its 
left that the average response is the glycaemic index but the variability is massive.

 A B 

Fig. 3  Testing the cohort response for standardised meals. (A): glycaemic responses and indices; (B): individual 
responses.

If we look at how a certain person responds to a certain food on two different days, we can see 
that the response is very uniform (Fig. 3B). The variability between people is high, but low for 
any individual from day to day. And it looks like there is a certain rule for everyone that is deep-
ly rooted within their physiology. No one knows yet what that rule is and how it comes about.

We collected a huge amount of data that will keep us busy for the next ten or 15 years. But 
we are already beginning to see clues about factors that may be part of the individual response 
rules. Of course, the more diabetic you are and the more obese you are, the more radical your 
response would be to whatever food you eat. So this was well expected. But we started to 
see novel things, for instance that responses to fructose are associated with the emergence of 
certain bacteria.

Sure, these were responses to test foods, but participants also reported their real-life be-
haviour. So we also have a huge amount of food-related data and the variability in the re-
sponse to them is huge, just like for the test foods. There are very interesting counterintuitive 
examples: people who eat a bowl of rice versus people who eat a bowl of ice cream. You may 
expect – I did – that all people have a huge glycaemic response to ice cream and a smaller 
one to rice. But there are individuals who showed exactly the opposite: they did not spike on 
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ice cream but did greatly spike on rice. Actually, when we tested the entire cohort, we found 
that 70 % of the individuals do not spike on ice cream – which may be a good inspiration for 
many of us ice cream lovers.

5. A Predictive Algorithm

The major aim of this study was to develop a predictive algorithm for the individual glycae-
mic response. Some predictions look quite obvious: if we eat a diet with more carbohydrates, 
on average we will spike. But when we measured the predictability of this ‘gold standard’ of 
the field of nutrition science, the predictability was very low at only 0.37, meaning that 63 % 
of the glycaemic response was unexplained by carbohydrates.

In contrast, we used machine learning algorithms that used the big data of 900 of the in-
dividuals as input and trained itself to develop an individualised algorithm for each of these 
individuals. Then we took the data of the remaining 100 individuals that did serve as training 
data and asked the trained algorithm to predict their individual responses.

When we start adding other features into the personalised algorithm, such as other meal 
features, the logged activity, the microbiome features or personal aspects, its predictive power 
greatly improves to 0.67. So by applying a machine learning approach to big data, you can 
actually develop an approach that predicts physiological response without even understand-
ing the responsible physiological mechanisms. The microbiome is the single most robust and 
important set of parameters that has achieved this predictability power. When we applied the 
algorithm to the 100 remaining individuals, its predictive power even rose to 0.7, showing that 
the training induced a reproducible response.

6. Validating the Algorithm

Now it was time to see whether this approach works in real life. As a validation study, we 
took a group of individuals, most of whom were pre-diabetic. This big sub-set of individuals 
already feature changes in their blood sugar responses, indicating that about 70 % of them 
will become diabetic in ten years. Remember, there is no real solution for this huge sub-set 
of individuals. Actually, when we put the one-size-fits-all recommended diet – the American 
Heart Association Diet – into our algorithm, more than half of these individuals on this diet 
would progress faster to diabetes.

We put these pre-diabetic individuals through the exactly same weekly process and then 
we asked the algorithm to devise a set of good diets and a set of bad diets for each of these 
individuals. All diets were isocaloric so there would be no caloric differences that could have 
affected the results. But between individuals these diets were very different; some compo-
nents of one’s good diet would appear as somebody else’s bad diet and vice versa. We then 
asked the individuals to eat only their personalised good diet for a week followed by their 
personalised bad diet for a week while we extensively measured and monitored them.

Figure 4 shows one of our participants. She was given a set of good diets tailored to her 
and a set of bad diets tailored to her. You probably would not be able to do tell which of the 
diets was the ‘good’ one or the ‘bad’ one, because when we tried this on our students that 
were involved in the study we got a 50 % success rate. For example, the good diet included ice 
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cream, but also hummus and eggs and the bad diet included sushi and, for some reason, corn. 
It is really counter-intuitive. But when we measured her glucose levels, the difference became 
very clear (see Fig. 4): during the week of bad diet – the one with the sushi and the corn – her 
blood sugar level spiked many, many times to almost diabetic levels. In contrast, when she ate 
the good diet she normalised her blood sugar levels.

 

1 2 3 4 5 6 7

G
lu

co
se

 le
ve

ls
 (m

g/
dl

)

60

100

140

180

Days

 
 

 

Good 
Bad

Fig. 4  Example of blood glucose response to algorithm-tailored diets. Good diet: red. Bad diet: green.

The statistical significance of the difference between the diets was huge. For a different in-
dividual, the good diet included croissants, halva, and hummus and the bad diet for some 
reason included peaches and grapes. But again: when that individual was given his individual 
bad diet, he spiked to very high levels and when he was given his individual good diet he 
normalised his blood sugar levels.

All but one of our participants achieved a significant improvement during the good week 
and deterioration during the bad week. In this validation cohort, our predictability reached 
0.8, which is close to what we think we can achieve based on the existence of some intra-
individual variability. We actually profiled the gut microbiome every day of the good week 
and every day of the bad week because this gave us an opportunity to really study in detail 
what the microbiome is doing. We found out that when these individuals improved during 
the good week or deteriorated during the bad week, we could identify a signature of bacteria 
which in all of them changed to the same direction, even though each individual started with 
a unique microbiome and we gave a different intervention to each individual.

In summary, these results show that an extensive big data analysis – even without under-
standing any mechanism – can identify putative drivers of disease. In this way, we identi-
fied microbes as potential drivers and effectors of the glycaemic response that could not be 
identified in any other way. What was really reassuring was that some of these bacteria had 
been described before in studies looking at diabetic individuals. Many of the others are new 
bacteria that nobody has seen before.

In the physiological and pathophysiological context, we always encounter a high degree 
of variability and complexity, which is the theme of this meeting. Often, we are afraid of that 
complexity: we try to reduce it, we try to ignore it, or we look at averages and not at variants. 
However, now, technologies are available that enable us to start exploiting and understanding 
how variability manifests in risk for common diseases. And you can apply the same set of 
rules to look at any disease state using big data and smart computation analysis tools.
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Modelling Ecosystems – 
From Plant to Animal Communities

 Thorsten Wiegand (Leipzig)1

Abstract

There is now a broader public awareness that ecosystems are under increasing pressure due to climate change, habitat 
loss and fragmentation, extinctions of species, and biological invasions. This raises concerns about their future ability 
to provide the ecosystem services required for human well-being. Designing target-oriented strategic interventions 
requires a general understanding of the underlying mechanisms that drive ecosystem dynamics as well as detailed case-
specific data-driven analyses. Modelling ecosystems is crucial to this endeavour. However, ecosystems are inherently 
difficult to study: they are subject to internal and external stochasticity, and the scales with which data are collected are 
not necessarily the scales relevant for their dynamics. Moreover, different species present specific challenges to model-
ling attempts due to their particular natural history. So, ecological research is often case-driven with limited powers of 
generalisation. As a consequence, no general theories akin to those in physics exist. There is an ongoing discussion re-
garding the appropriate level of detail required for modelling and understanding ecological systems. Simpler conceptual 
models and more detailed data-driven models possess their own advantages and disadvantages. As I will discuss, new 
technological developments and the increasing availability of detailed remote sensing data provide exciting opportuni-
ties to reach levels of understanding that were unthinkable just a few years ago. It is hoped that these advances will allow 
ecologists to keep up with the increasing challenges that ecosystems are facing today.

1. Modelling in Ecology

Ecosystems are hierarchically structured and involve genes, individuals, populations, and 
communities of plants and animals co-existing together in a given landscape. Beyond that, 
their dynamics influence and are influenced by feedbacks on a larger scale, such as global 
climate or the global carbon cycle. Moreover, ecosystems are driven by abiotic factors such 
as topography or soil, stochasticity introduced by the climate, and disturbance events such as 
floods or fires. And, of course, we humans also drive ecosystems.

Given this complexity, it is not surprising that ecology has subdivided into many different 
sub-disciplines which investigate different aspects of ecosystems. For example, population 
ecology investigates patterns and dynamics at the population level. When many different 
populations interact in the same area, we are talking about the community level driven mostly 
by competition or predator-prey interactions, in short: factors that regulate the growth of 
populations. One more level up, ecosystem ecology studies the biotic (living) and the abiotic 
(non-living) components of ecosystems and their interactions, i.e. the flow of energy and mat-
ter through ecosystems.

All these disciplines were developed to better understand how ecosystems work. This is 
an important endeavour because when ecosystems are under pressure, it ultimately becomes 

1 Helmholtz Centre for Environmental Research – UFZ, Leipzig.
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a problem for us humans. The Millennium Ecosystem Assessment outlined four different 
groups of services that ecosystems provide to us: provisioning, regulating, supporting, and 
cultural. The pressures that ecosystems are facing today include climate change, habitat loss 
and fragmentation, species extinction, and invasion of alien species. To mitigate these effects, 
we must develop an understanding of the underlying interactions between organisms and 
their environment. Accurate theories and predictive models are indispensable in this effort.

Wikipedia defines a theory as ‘a well substantiated explanation of some aspects of the natu-
ral world that is acquired through the scientific method and repeatedly tested and confirmed 
through observation experimentation’. In contrast, a model is defined as ‘a purposeful and sim-
plified representation of the reality that makes a particular feature of the world easier to under-
stand, to define, to quantify, visualise or to simulate’. A model assembles current knowledge 
that is regarded as important for the question on hand into a logical framework and explores the 
consequences of that knowledge. In doing so, there are always trade-offs among realism (how 
well the model structure mimics the real world), generality (the range of situations where the 
model applies) and precision (the accuracy of the model predictions). For example, a realistic 
model in general does not have great generality because it needs to include case-specific details.

Usually one model cannot fulfil all these wishes at the same time. Each model type has 
its own domain and comes with different trade-offs. The appropriate model type must be se-
lected based on the scientific question and the data on hand. We can divide models in ecology 
roughly into four categories: statistical and phenomenological models, analytical equation 
models, numerical equation models and rule-based simulation models, including agent-based 
models or cellular-automata models.

2. Statistical and Phenomenological Models

Statistical and phenomenological models search for patterns in the data and extrapolate them. 
For instance, classic regression models are based on correlations in the data. This type of 
modelling has recently been extended to incorporate non-linear relationships, Bayesian ap-
proaches, and more realistic mechanistic components. Machine learning approaches make 
predictions based on properties of training data and are particularly related to big data. Final-
ly, null model approaches are used to detect patterns in the data. This is done by randomising 
certain aspects of the data and leaving others intact to find out which components in the data 
cannot be explained by random fluctuations alone.

While these models can show high levels of precision, they have a number of shortcom-
ings and problems. Often, they cannot be transferred to new situations, so they are not general. 
And, in many cases, they cannot be used to describe dynamic behaviour. Ecologists, however, 
want to understand the mechanism and processes driving the dynamics of their ecosystems.

3. Analytical Equation Models

Analytical equation models have a long tradition in physics and were among the first models 
applied in ecology to describe the dynamics of populations and communities. The simplest 
analytical models are differential equations, such as the logistic growth model shown in 
Figure 1.
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An advantage of this type of model is that analytical solutions can often been found, e.g. by 
the rules of calculus. This allows to directly study the impact of model parameters, such as the 
growth rate r or the capacity K in the logistic growth model (Fig. 1). Analytical equation mod-
els are used to describe the dynamics of single populations, of interacting populations such as 
predator-prey systems, or of entire food webs and communities. They can also be extended to 
incorporate random variables. Such stochastic differential equations have gained particularly 
importance in ecology, especially for the study of population extinction and neutral theory.

Analytical equation models have a number of shortcomings and problems, however. The 
‘fear’ of biologists to collaborate with modellers appears to be rooted in this type of model: 
they are formulated in an abstract mathematical way and their parameters often have no di-
rect correspondence to measurements taken in the field. And, because of the mathematical 
formalism, they are extremely difficult to communicate and become a type of ‘black box’ for 
ecologists who are not familiar with equation models.

When I was a tutor in mathematics classes for biologists, many of the students studied 
biology exactly because they never wanted to be bothered with mathematics again. That may 
be part of the reason why there is still a certain resistance against modelling and theory within 
the ecological community.

One limitation of analytical equation models is that their equations can often only be 
solved for idealised situations and not for more realistic field conditions. But ecologists need 
solutions for real systems. This is especially true if spatially explicit processes play a role.

4. Numerical Equation Models

Numerical equation models can be seen as an extension of analytical equation models. They are 
basically numerical iterations of equation models and can overcome several of the aforemen-
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Fig. 1  A logistic growth model, an analytical equation model. This model describes exponential population growth 
with per capita rate r if the population is small, but resource limitations will lower reproduction and/or survival with 
increasing population size N(t) and cause it to stabilise around a carrying capacity K.
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tioned shortcomings. Most importantly, they can describe more realistic field situations. Meta-
population models, for instance, are spatially explicit and assume a stochastic balance between 
extinction and recolonisation of small local populations inhabiting patches of suitable habitat. 
Forest gap models include mechanistic representations of processes such as the carbon bal-
ance of trees and competition for light that drives growth and survival. On the other side of the 
continuum are complex ecosystem models that emerged in the 1960s and 1970s under the label 
‘big biology’. They describe the flow of matter and energy in a system and could often only rep-
resented by flow charts with many boxes and many arrows, so they were complicated to assess.

However, just like any other type of model, numerical equation models have their own 
particular shortcomings and problems: they can become too complex very quickly, especially 
if the model is supposed to include everything that is known about a system. This renders 
them at times intractable, making model analysis and parameterisation very complicated.

One relatively simple and still tractable example of this class of models is FORMIND 
(Fischer et al. 2016), a forest simulation model developed by my colleague Andreas Huth. 
Here, the forest is conceptualised by gaps; when a big tree dies and falls, it creates a gap. 
FORMIND follows the fate of those gaps, where trees compete for light and space. The car-
bon balance of each tree is modelled based on photosynthesis and respiration. Relationships 
of the diameter of a tree to its height and the shape of its canopy determine the model trees’ 
carbon content. And finally, mortality and recruitment are represented by stochastic compo-
nents. Figure 2 shows what this type of simulation can look like.

 A B 

Fig. 2  In the example, the FORMIND forest simulation model describes a forest succession in a 100 m × 100 m plot 
based on seven different plant functional types (PFT). (A): The graph shows a snapshot of the locations and sizes 
of the trees; and (B): the graph shows the time series of the total basal area of the different plant functional types.

Typically, four, five, or six functional simulation types are used, i.e. different strategies of 
trees (e.g. pioneer or climax species). They are required to represent reasonable dynamics 
with pioneer species that are then replaced by other species later in the succession. Due to 
the long tradition in forest research, forest modellers are in the lucky position that sufficient 
data is often available to find the right parameters for these models, or, in scientific jargon, to 
‘parameterise’ these models.
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Based on all these building blocks, numerical equation models can predict realistic dynamics 
of forests. The FORMIND model has been applied to forest management in many tropical 
areas of the world.

5. Agent-Based and Individual-Based Models

Finally, there are agent-based and individual-based models (Grimm and Railsback 2005). 
They are completely different from the models discussed above. Emerging in the 1990s, they 
came with a characteristic novelty: they did not always require (differential) equations! This 
is sometimes very difficult to communicate to mathematicians, but these models can be di-
rectly based on simple computer code, simple ‘rules’. You may say ‘rules are equations, too’, 
but in these models there is still no equation to interrogate.

The individual is the unit of the model. This can be a plant, an animal, a blood cell, or 
whatever is of interest. The fate of each individual is simulated in a stochastic manner, based 
on its interactions with other individuals and the environment. All population or community 
level properties emerge as a consequence of those local interactions. Thus, the spatial dynam-
ics can become very realistic. Individual-based models are structurally realistic because the 
unit of the model is also the unit of the observation. This has the enormous advantage that 
now the abundant knowledge of ecologists and biologists about the behaviour of individuals 
can be directly incorporated in the model. And, of course, they are easy to communicate to 
ecologists.

But again, one should not forget the shortcomings we touched upon before: very specific 
methods are required to cope with the complexity of these models. Often, the model design is 
quite ad hoc and not tied to theory, so generality is sometimes lost.

6. General Problems with Modelling in Ecology

To summarise this part, here are some general problems of the models in ecology. The first 
problem is uncertainty. Measurements and parameter values are uncertain. The representation 
of processes is uncertain: It is often not exactly known how the system works, so our assump-
tions are usually simplifications. Additionally, ecosystems may possess very strong inherent 
stochasticity: for example, when an individual moves its movements can be close to random – 
so it is uncertain where the individual will end up exactly. Ultimately, the environment itself is 
very uncertain and stochastic: climate and other sources constantly disturb ecosystem dynam-
ics. In the end, the output of all these models will be a distribution of probable outcomes and 
not a nicely defined deterministic value.

Additionally, data in ecology is always sparse. There is almost never sufficient data to 
determine the values of model parameters directly. Consequently, small errors in the input can 
propagate into big errors in the predictions. Additionally, data collection usually lasts only 
two to four years, the typical period for a doctorate degree, but data on a large spatial and 
temporal scale are usually missing. However, many ecological phenomena unfold on larger 
scales, causing the up-scaling problem: how to extrapolate data from small scales to describe 
the phenomena of interest on large scales. Finally, natural history is often idiosyncratic: each 
system may have specific features that drive its dynamics.
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7. Potential Solutions for the Limitations in Ecosystem Modelling

Figure 3 shows a graph that describes the relationship between model complexity and the 
payoff of the model. So we may have a trade-off between realism and tractability of a model.

 

Fig. 3  The Medawar Zone: Trade-off between realism and tractability of a model versus its complexity. Usually there 
is a zone of intermediate complexity where the payoff is high. (Modified after Grimm et al. 2005.)

Structural realism is the ability of a model to produce independent predictions that match 
observations. It increases with model complexity. However, at the same time the increased 
complexity makes the model analysis more complicated. Additionally, if more and more pa-
rameters need to be determined with the same amount of data, the parameter and prediction 
uncertainties increase. Thus, there is a zone of intermediate complexity that is balanced be-
tween structural realism and intractability, where the payoff is maximised. This area is called 
the Medawar Zone.

8. Finding the Medawar Zone

It is difficult to find the Medawar zone without a systematic modelling strategy. One solution 
was developed in ecology at the end of the 1990s, when Hilborn and Mangel published 
the book The Ecological Detective (1997). Its central tenet was confronting models with 
data. Their strategy was to use numerical equation models and apply methods of statistical 
inference to determine the appropriate level of model complexity. They emphasised the prin-
ciples of parsimony and asked: ‘Can the data justify the amount of detail in the model (i.e. its 
complexity)?’ Their methods were based on likelihood functions and information theoretical 
approaches, like the Akaike Information Criterion (AIC). The methods of Hilborn and Man-
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gel revealed that the additional biological detail in many models was often not justified and 
that, in fact, the data was not sufficient to trade for complexity. Nowadays, extensions of this 
approach, including Bayesian inference, have broad applications in ecology.

9. Pattern-Oriented Modelling

At the end of the 1980s, when the first individual-based or agent-based models appeared, 
scientists were very excited about the promise of such computer simulation models to unify 
ecological theory. However, the initial enthusiasm quickly dissipated due to a number of 
problems, including a lack of methods to cope with the issues of model complexity and er-
ror propagation, and the models were often designed ad hoc, not tied to theory, and lacking 
generality. To be fair, one could not expect full solutions to these problems within the 10 or 
20 years these models would be around; analytical equation models had some 200 years to 
find them.

Together with my colleague Volker Grimm and others (Grimm et al. 2005), we developed 
pattern-oriented modelling as a strategy to find the Medawar zone for individual-based simu-
lation models. We explicitly followed the basic research programme of science: the explana-
tion of observed patterns. Patterns are characteristic structures that contain information on the 
internal organisation of a system. In practice, we compare the ability of alternative models 
with different levels of complexity to reproduce several patterns at the same time. The focus 
on multiple patterns is important because it is well known that substantially different models 
can reproduce the same pattern. However, two or more patterns that describe different char-
acteristics of the system are not that easily to reproduce at the same time by different models.

I will now illustrate this modelling strategy with an example of my own work conducted 
under a European Research Council (ERC) advanced grant. A big question in ecology is to 
explain the high species richness of tropical forests. Traditionally, ecologists assume that 
each species in a given ecosystem is different and occupies its own ecological niche, thereby 
limiting the interactions with others required for its persistence. However, around 2001 the 
publication of a book by tropical ecologist Stephen Hubbell called The Unified Neutral 
Theory of Biodiversity and Biogeography caused a big ‘scandal’ that shook the fundamentals 
of ecology. What upset many ecologists about this book was that Hubbell claimed that neu-
tral models, a class of analytical models that assumed that all species are identical (and have 
no niches), could explain important properties (patterns) of species rich communities. For 
example, these models can predict the distributions of rare and abundant species in tropical 
forests or coral reefs. Clearly, neutral models were not really welcome because all the work 
ecologists had done for so long on species differences and niches suddenly seemed irrelevant.

Ecologists before Hubbell usually focussed on differences among species and started 
with the most complex situation, whereas Hubbell used the simplest case as a starting point. 
He tested how far he could go with his radical assumptions to find out how much detail must 
be added to a neutral model to explain important properties of species in rich communities.

My strategy was to combine the strengths of different models. We used the analytical predic-
tions of neutral theory as point of reference and started with a spatially explicit and individual-
based version of a neutral model. This allowed us to compare the model output with many more 
patterns extracted from inventory maps of tropical forests (Fig. 4) that were possible with the 
analytical neutral theory. We used also null model approaches to identify spatial patterns in the 
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distribution maps of trees (Wiegand and Moloney 2014). Finally, we developed alternative 
model versions that included the simplest neutral models and also models where species were 
different and tested their ability to reproduce the patterns observed in the forest inventories.

 

Fig. 4  Spatial inventory data of the Sinharaja tropical forest in Sri Lanka and patterns that can be extracted from such 
data. The size and status of every tree is measured every five years. This allows extraction of data on survival and 
growth of trees used to parameterise the models. Additionally, it includes the size distribution patterns of individual 
species, information on the spatial aggregation pattern of individual species and co-occurrence patterns of different 
species that live close to one another. We can also determine how many species can be found on average in an area of 
a given size and how the local species composition changes in space. Finally, the inventory data contain information 
on the ecological similarity of neighboured individuals and how strongly they compete.

One challenge with this pattern-oriented approach was to parameterise 200 or 300 species to 
describe the interactions of a total of 20,000 to 200,000 individuals. We were very lucky to get 
access to the data of the CTFS-ForestGEO network of the Centre of Tropical Forest Science 
(CTFS), one of the largest data enterprises in ecology. Today, that network comprises 63 field 
sites all over the world that all follow the exact same protocol. They comprise completely 
mapped inventory plots of tropical, subtropical and temperate forest of up to 50 hectares, 
recording and mapping every tree bigger than one centimetre in diameter, and then monitor-
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ing the development of each tree every five years. This has generated a huge amount of data. 
Figure 4 shows as an example a representation of the larger trees in one forest in Sri Lanka.

We used individual-based dynamic biodiversity models with different complexities to find 
out how complex our model must be to recreate forests with observed spatial structures as 
those shown in Figure 4. Our hypothesis was that the neutral models are oversimplified and 
would completely fail to capture any of the complex spatial structures in species diversity.

To meet the technical challenges of the pattern comparisons, we developed new methods 
of stochastic inference that allowed us to use well-established optimisation tools to fit the 
model to the observed summary statistics. We also made no attempt to parameterise individu-
al species. That would have been impossible as there were 200 species, many of them so rare 
that little to nothing was known about them. So we used distributions for their parameters. If 
the variance of the distribution was zero, we obtained a neutral model, because then this prop-
erty was the same for all species. Increasing the variance yielded more and more variability 
in the properties of the different species.

The surprising and unexpected result was that the simple neutral model already provides 
a very good approximation of the complex spatial structures of species in rich tropical forests 
(May et al. 2015). The model was able to fit all individual patterns with very high precision 
and to fit several patterns together with sufficient precision (but not all). So, it looks that Hub-
bell was right, after all. Our structurally realistic model failed in an especially informative 
way. This allowed us to test specific hypotheses on the relative importance of species differ-
ences and niches in explaining additional properties (patterns) of species-rich communities.

In summary, to cope with complexity, one should try to combine the strengths of the dif-
ferent types of models, employ analytical models and predictions from ecological theory as 
starting points, then access new data sources by using statistical and phenomenological mod-
els to identify patterns in the data, and strive to explain these patterns rather than modelling a 
complete system. To do this, one can take advantage of newer methods of statistical inference 
for model selection that can actually tell us how much complexity is needed. As always, one 
must apply Occam’s razor: keep models as simple as possible but as complex as necessary.
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Discussion of Session 3

Lengauer: Dr. Elinav, you showed us a regression model that takes personalised features 
as input and regresses the glycaemic response. How did you formalise the glycaemic 
response? I assume it is a scalar number. What is that scalar? Also, you said that the most 
informative set of features were the features characterising the microbiome. What kind 
of features are these, and how many dimensions did you need to characterise the micro-
biome?

Elinav: To your first question, it is not a one-point-one-time feature. We took advantage of 
the fact that during the monitoring week we had many, many points of measurement, and 
therefore we measured areas under the curve.

 Concerning your second question, we are talking about hundreds of features of the mi-
crobiome. We are continuing to dig deep into the data and to add more and more features. 
There is no single feature that makes a high contribution, but many, many features, each 
adding a small contribution. You would never be able to do this without an unbiased ma-
chine learning approach. The overall aim would be to dig more into the microbiome to 
enable a good prediction by only using the microbiome and perhaps a set of easily obtain-
able clinical features. We are actually very close to achieving this. In this study, we did 
not know what would work and what would not, so we recorded everything we could. But 
now, since we see that the microbiome has a relative heavy contribution, we are trying 
to find out whether we can get to a point where only the microbiome plus some clinical 
metadata can achieve a decent, if not identical, predictability without the need for all of 
the rest.

Lengauer: Are the genetic features metabolic features?
Elinav: When you focus on the microbiome, these include two basic sets of next-generation 

sequencing data. First, there is the 16S ribosomal DNA data set, which gives you the 
relative abundance with its many associated features. The more important and the much 
more informative set is the short metagenomic sequence, which gives us gene abundance, 
pathway abundance, and modular abundance.

Guest: Dr. Elinav, you showed us some special individualised diets. For some people, choco-
late is good; for others, red wine is good. Did you check whether that is congruent with the 
individuals’ personal preferences? Some people like red wine, some people like choco-
late, and some like chips.

Elinav: That is a question that I am often asked. I will divide my answer into two parts: On a 
very general level, we are aware that people judge some foods as good for them and some 
foods as bad. However, nobody has ever measured that feeling of something that makes 
sense. We intuitively connect to what people think or feel. This is why we had a very high 
level of compliance in this study as compared to any clinical trials that have been done in 
the last 15 years. On a more specific level, however, we did not measure or ask people to 
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tell us what they think would be a good or bad diet for them. Therefore, I cannot answer 
your question in a scientific way. But if I may speculate, I guess people would not be able 
to intuitively say what is good or bad for them.

Guest: I have a question for both speakers about validation of these models. Specifically, for 
Dr. Wiegand: Is there a way to apply your model to a different patch of forest? Or do you 
somehow have control over all these parameters that you have included in your model?

 A similar, slightly more specific question for Dr. Elinav: You mentioned you have trained 
individual decision trees for every person and then you took 900 of these and validated 
them on 100 other persons. Are you combining the predictions of these different indi-
vidual models for new members of society? Or are you validating these predictions of the 
individual models on new data per person?

Wiegand: We developed two different strategies for model validation. The first is that the 
models have a structured realism: one can test many additional structures in the data that 
were not used for model parameterisation. We attempt to test as many of such secondary 
predictions as possible. If the model predictions don’t match these additional patterns, 
we probably have a problem with our model. The second strategy is to use independent 
data from different areas. So, for example, the forest model, or FORMIND model, I have 
presented is based on more general functional types instead of individual species and 
therefore also applies to similar forests. This allows us to use the model for the manage-
ment of tree logging with different scenarios.

Elinav: I will add that the biggest risk we face is overfitting. Basically, we take 900 individu-
als and build this decision-tree-based analytical model, which is the same for each partici-
pant. We have tens of thousands of these decision points. But everyone goes through the 
same process. So, the results are different but the process is the same process. The danger 
here is that you are building a model that fits the 900 people almost perfectly, but will not 
fit any other population. So, with the group of 10, we corroborated the population-based 
decision tree. While we have seen quite decent results, we have not yet reached saturation. 
So, the more people we add, the better the results will be.

Friedrich: Are there any approaches to combining these microbiome studies with genetic 
data directly, since many metabolic diseases are caused by genetic modifications?

Elinav: As I mentioned in the beginning of my talk, we also performed quite an extensive 
host-genetic analysis by doing a million deep analyses on each one of these 1,000 indi-
viduals. Actually, the data that I presented here did not include these host genetics simply 
because it takes more time. We have now completed this huge genetic database. With it, 
we have a unique opportunity to do something that has never been done before: a head-to-
head comparison of the contribution of host genetics versus the microbiome with respect 
to a particular predictive model or a particular clinically relevant question, in this case 
glycaemic management. This is work in progress. The results have not yet been finalised. 
As we expected, so far, the microbiome data may be as predictive or even more predictive 
than genetic data for glycaemic responses.

Guest: I am interested in the dynamics of the microbiota, such as daily fluctuations. Do you 
see or have to control for such dynamics?

Elinav: The dynamics of the microbiome is an additional factor. What I have shown you is a 
snapshot microbiome analysis. It tells you nothing about the dynamics of the microbiome. 
Still, this is a critical question when looking at the long-term effects of a dietary interven-
tion. For example, one really important question is: if we intervene in a personalised diet 
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for a long period of time in a certain individual, would the microbiome drastically change 
in response? What we are checking for now is whether we would have to revisit that per-
son’s data in order to tweak the personalised predictions based on an altered microbiome. 
In the interventional part, we measured the microbiome every single day. We have done 
this in other studies as well. The simplest answer I can give you is that if there is one envi-
ronmental factor that affects the microbiome in a drastic and reproducible manner, it is the 
diet. Within two to three days of a drastic change in diet, you see very reproducible chang-
es in both the composition and the function of some of the members of this ecosystem.

Buchrieser: You gave us a wonderful example of how important the microbiome is in our 
hands. It is conceivable that diet and microbiome go together. But in the last years, the mi-
crobiome seems to have become responsible for everything: for gut and brain, for autism, 
for asthma – what do you think about this?

Elinav: We must be very careful and very responsible. The microbiome like CRISPR-Cas 
is a very sexy scientific subject at the moment. We are very happy about that, but the mi-
crobiome is often being oversold. It is certainly not responsible for everything. In many 
cases, it is not even the main driver. So, it is important to stay very cool and to follow the 
data rather than our megalomaniac dreams. The hype is helping and harming the field at 
the same time. The way out is to follow the data.

Friedrich: For modelling your forest ecosystem, is it also important to include the soil eco-
system with all the species?

Wiegand: In some aspects, it can become important. Trees in certain types of habitats associ-
ate with the soil in a particular manner. There has been a lot of work done on these plots 
where they take soil samples and relate the spatial distribution of the species to soil nutri-
ents or mycorrhiza which are very important for the growth of certain species. Pathogens, 
herbivores, and small insects are relevant factors, too. For instance, the Janzen-Connell 
hypothesis poses that in big patches of trees of one species, species-specific pest patho-
gens and herbivores can accumulate and affect only conspecific individuals. In this way, 
they regulate the growth of abundant populations. This is a big theme in tropical forest 
ecology. But one also needs to be a bit careful not to include everything, because then the 
model becomes intractable. 
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Modelling Biodiversity and Collective Behaviour

 Iain Couzin (Constance)1

Abstract

Understanding how social influence shapes biological processes is a central challenge in contemporary science and 
is essential for achieving progress in a variety of fields ranging from the organisation and evolution of coordinated 
collective action among cells, or animals, to the dynamics of information exchange in human societies. Using an 
integrated experimental and theoretical approach, I will address how and why animals exhibit highly coordinated 
collective behaviour. I will demonstrate new imaging technology that allows us to reconstruct (automatically) the 
dynamic, time-varying networks that correspond to the visual cues employed by organisms when making movement 
decisions. Sensory networks have been shown to provide a much more accurate representation of how social influence 
propagates in groups and their analysis allows us to identify, for any instant in time, the most socially influential 
individuals within groups and to predict the magnitude of complex behavioural cascades before they occur. I will 
also investigate the coupling between spatial and information dynamics in groups and reveal that emergent problem 
solving is the predominant mechanism by which mobile groups sense and respond to complex environmental 
gradients. Evolutionary modelling demonstrates that such ‘physical computation’ readily evolves within populations 
of selfish organisms, allowing individuals to collectively compute the spatial distribution of resources and to allocate 
themselves effectively among distinct and distant resource patches without requiring information about the number, 
location, or size of the patches. Finally, I will reveal the critical role uninformed, or unbiased, individuals play 
in effecting fast and democratic consensus decision-making in collectives and will test these predictions with 
experiments involving schooling fish and wild baboons.

When I was a kid and I saw footage on the BBC in natural history programmes, I was 
fascinated. Ever since, I have wondered how and why groups of animals form and coordinate 
their behaviour. Now, as a scientist, I am even more fascinated because I now know that 
animals in flocks or schools are unrelated individuals. We have got very little understanding 
from an evolutionary perspective as to why unrelated organisms, in contrast to, say, the social 
insects, form these beautiful patterns.

We cannot use a verbal argument to understand how these interactions scale to collective 
properties. So it has become essential for us to use modelling techniques, mathematical 
models, and agent-based models to get inside the head of the individual animal to understand 
what makes it tick and why it behaves the way it does. When I started this research, there 
was no available experimental data at all. So, I speculated about the types of interactions that 
individuals may exhibit, as did some other researchers in physics and some biologists. For 
example, individuals may tend to match their behaviour with the behaviour of near neighbours.

One underlying assumption of such models is that individuals exist at certain positions. 
In these physical systems, the organisms themselves provide the energy, so they are far from 
equilibrium. Individuals also interact with the other individuals. If birds in flight get too close 
and collide, it can be fatal, so they exhibit a tendency to avoid collisions. On the other hand, 

1 Max Planck Institute for Ornithology, Constance.
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if individuals become isolated from groups, they can lose the benefits of living in a group. 
And the costs of being isolated can be massive: being eaten by predators, for instance. There 
is a tendency for individuals to be attracted to others and perhaps also to align their path with 
that of near neighbours.

1. States of Living Matter

One could use continuous functions, step functions, or a variety of ways to model these tendencies. 
These models have one thing in common: they all predict that large groups of individuals take 
one of a number of fundamental states similar to the macroscopic states of matter:

– a swarm-like state that has statistical properties very similar to a mosquito swarm;
– a parallel fluid-like state that we typically think of when we see these types of groups and
– a rotating state in which the individuals are perpetually rotating around an empty core.

Another prediction of these models is that groups of animals exhibit strong forms of collective 
memory. For example, if you keep all interactions identical and just increase the preferred 
speed of all individuals, the system will spontaneously go from a swarm-like state into a 
rotating state. Increasing the speed even further will move the system into a parallel state.

Interestingly, when we slow the individuals down again, the system remains in the parallel 
state up to certain point and then it flips back directly into its original swarm-like state, 
skipping the rotation state altogether. So the system can occupy two completely different 
collective states under identical individual behaviours (preferred speeds).

This demonstrates that emerging patterns strongly depend on previous patterns, even 
though none of the individuals in the group has any memory of that history. Indeed, there 
appears to exist an inherent underlying low-dimensional dynamic that is reminiscent of purely 
physical systems. For instance, if you cool pure water down to slightly below the freezing 
point, it will stay liquid. But if you now introduce a tiny perturbation, the water will quickly 
transition to its solid state, or ice. So water, too, can exist in two different states, liquid and 
solid, under the same condition (the same temperature). Physical examples like these turn out 
to be informative about information transfer within groups of animals.

2. Telepathy or Something Else?

It is understandable that in the 1950s, the 1960s, and even into the 1970s, people believed 
there must be some kind of telepathy at work to give rise to the remarkably synchrony seen in 
swarms of animals. However, one feature that differentiates groups of animals from physical 
systems is, of course, that they evolve. The rules that govern their interactions are subject to 
strong natural selection. And as we have seen in Professor Singer’s talk, natural selection can 
produce systems with long-range synchrony emerging from local interactions.

Now, if we add a predator to the same model and a common sense rule for individuals like 
‘move away from the predator should it come too close’, we get some complex dynamics, 
such as individuals being able to detect and respond to the predator – not by seeing it but by 
responding to the wave of escape behaviour that propagates very quickly across the group. Of 
course, if a model has many parameters, it is sometimes unclear whether it actually captures 
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reality or just produces patterns that look like reality without revealing anything about the 
underlying mechanics.

3. Fish Tracking

When I set up my own lab for the first time, we planned to work on schooling fish. In the 
United States, wild fish are bred for the fishing industry to use as live bait. So you can buy a 
thousand of them for 70 dollars and they are delivered to your doorstep. Given that my lab 
employees are mostly physicists, this turned out to be a much more practical approach than 
trying to catch our own fish. The fish we ordered are so-called surface feeders; they swim 
near the surface, regardless of how deep the water is. Figure 1 shows how the fish transition 
between collective states in one of our water tanks. They produce a rich dynamical system 
and we aimed at interrogating this system with the same level of detail that previously was 
only possible for theoretical models.

In collaboration with Hai Shan Wu from China, we developed a software (it took about 
seven or eight years to develop) that could track the motions of all the individuals in our 
schools of fish (Strandburg-Peshkin et al. 2013). It does not lose track of them even when 
they cross each other’s paths, which is an extremely difficult challenge in computer vision. By 
tracking our fish over hundreds of hours, we managed to collect high quality data, including 
their polarisation (how well aligned they are) and their rotation. In our data, we only ever see 
the three fundamental states that we predicted, regardless of the group size. This means that 
the three states are indeed attractors in this low-dimensional space. In its transitional regime, 
the system is unstable and will flip back and forth.

So, what are driving transitions in these collective dynamics? One hypothesis from our 
model was that changes of individual behaviour, like a change in speed, might drive changes 
in collective behaviour. But remember, there are two different metastable collective behaviours 
for the exact same individual behaviour. Another hypothesis from our model was that stochastic 
perturbations cause transitions. It turns out that both processes are important. The transition from 
a locally and globally disordered state to the two locally ordered states is driven by a change in 
individual behaviour, or by a change in speed. But the transition between two ordered states, such 
as the polarised and the rotating state, is driven by random fluctuations that can cause the whole 
group to flip from one attractor to the other, i.e. the system is in a metastable regime.

Microscopically, the polarised state and the rotating state look very different. There is 
no evidence, however, that fish know what group size they are in or whether they are in the 
rotating state or in the polarised state. Regardless of group size, as you increase speed, you 
increase the local polarisation in the local neighbourhoods of all the fish. We even tried to 
train the fish to recognise what state they are in, but they simply cannot do it.

4. The Wisdom of the Fish Crowd?

We often think about computation taking place in computers or in the brain. But computation 
can also happen in real social networks while the individuals are not aware of the computation 
at all. Our fish, like many other fish, live in dappled streams where light is variable and they 
prefer to be in the dark regions, a characteristic most fish share. Therefore, we used a projector 
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to simulate various lighting conditions. The computational challenge to the whole group of 
fish is to find a group behaviour that avoids the light areas and finds the darkest regions.

With this experimental setting, we were able to find the first experimental evidence that 
the individuals become much better at solving the problem when the group size increases. 
Was this a kind of ‘wisdom of the crowds’? The term goes back to Sir Francis Galton, a 
cousin of Charles Darwin. At a livestock fair, there was a competition to guess the weight of 
an ox. Galton took part, but his guess was far off the ox’s true weight. But when he took the 
average of the guesses of the eight hundred villagers, who had also guessed the ox’s weight, 
the result was only one pound away from the true weight. He concluded that rough estimates of 
many individuals, if combined, could lead to great accuracy. Perhaps our own experiment was 
a little bit like Galton’s: each individual fish takes a local noisy guess at the solution to the 
problem of avoiding light. Of course, fish cannot perform explicit mathematical calculations 
like Galton did. But perhaps, through their social interactions averaging all their motions, 
they are effectively averaging their imperfect individual guesses.

However, our data showed that individual fish are not capable of estimating the light 
gradient at all, regardless of group size (Berdahl et al. 2013). Which leads us to a conundrum: 
if the individuals are not utilising the local light gradient, how on earth is the group so good 
at responding to and tracking these light gradients? Of course, natural selection has come up 
with a beautiful and simple solution. The fish simply move faster in the brighter regions and 
slow down in darker regions. For a single individual, it would be a very poor strategy to try 
and stay inside a dark region. But fish in large groups, when combining this strategy with 
social interactions, are suddenly able to detect and sense light gradients.

The question is: how do they do it? When individuals in the dark region slow down, that 
leads to disorder. Meanwhile, individuals on the bright side are moving fast. This situation 
behaves as if there were a sort of spring-like potential between the two areas, where the spring 
gets tighter and tighter and exerts a centrifugal force towards the dark region. Additionally, in 
the dark regions the fish become more densely packed, which means the attraction is stronger 
towards them. Both factors are important.

Astoundingly, schools of fish can spontaneously grow by taking in more fish from the 
outside, to match the length scale of the environment that is important to them, even though 
they do not know what a length scale is. Natural selection has found this beautiful emergent 
property that allows them to spontaneously grow until they match the length scale. If they 
grow too large, this creates shear forces in the group and they will split up and then regrow to 
find the optimal length scale for their environment.

We have been able to exploit this very simple rule (‘move faster in the light’) for tracking 
light gradients with micro-robots. It is also being used in autonomous underwater vehicles 
to track phytoplankton plumes, oil spills, and so on. Yes, fish are selfish actors, but a type of 
physical computation evolves very readily among genetically completely selfish agents. They 
are just trying to optimise conditions for themselves, at the cost of others if need to be, for the 
benefit of the whole group.

5. Evolution toward Phase Transition

If we model this system and take it to the hydro-dynamic limit, there is a phase transition: the 
environment causes the system to fluctuate between a solid-like state and fluid-like state. Part 
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of the system can solidify while other parts remain fluid. By evolving to allow the environment 
to flip across that phase-like transition, groups of individuals could compute how to optimise 
their collective behaviour among different patches of the environment, even if they are not 
aware of how many patches there are. We looked at up to fifty patches and found that groups 
of individuals can perform a kind of physical computation that complements energetically 
expensive types of cognition such as brain activity (Hein et al. 2015).

6. Through the Eyes of Schooling Fish

We also developed software that tracks the individuals, maps their body posture over time, 
calculates where the eyes are and then reconstructs the pathways of photons onto the retina 
of each individual hundreds of times per second with graphic process units, allowing us to 
reconstruct the visual field of any individual in the group (see Fig. 1).

Fig. 1  The visual fields of a schooling fish. Red: left visual field, blue: right visual field.

Our schooling fish do not use the lateral line organ for social behaviour, they use vision. If 
you turn the lights off, they cannot school at all. They use their lateral lane to respond to the 
environment, but not for the social environment. We were able to show that a network of 
fish visual fields is much better than previously used models at explaining how behavioural 
changes spread through groups. Individuals are not simply interacting with a fixed number 
of neighbours within a local radius. But no one had tested how they interact with their visual 
neighbourhoods.
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7. Tickling a Fish to Provoke Waves of Escape

To really get at the heart of this problem, we looked at a hallmark of collective behaviour: the 
rapid spread of behavioural change in the response to a predator. We conducted experiments 
in which we had a little fibre that came up from below and tickled any of the fish that we 
wanted to startle. This kind of mechano-sensory stimulus always causes what is called a 
C-start in the fish, an emergency evasion behaviour. So, we could tell with certainty which 
fish initiated a social wave. If we missed the fish just by a millimetre, there was no influence 
on the group at all. We conducted 205 sessions and for each one we knew exactly who was 
the initiator of a tickle-provoked social cascade.

Sometimes you get large scale cascades. But most of the time nothing happens; no one 
responds, or only one or two individuals respond. So, a priori it is very difficult to understand 
if one animal’s C-start will cause a cascade across the group or not. To reach an understanding, 
we had to establish a functional mapping between the visual input the fish get and their motor 
output, which is a very difficult task.

Each sensory modality, including but not limited to vision, receives high-dimensional 
sensory input. The organism then must translate that input (potentially in combination with 
knowledge of its past behaviour) into a low-dimensional behavioural output. Locomotion in 
fish is controlled by a relatively small number of neurons in the hindbrain. Even physiologically, 
this is inherently a dimensionality reduction problem.

Using a computational visual field reconstruction, body posture mapping, and machine 
learning techniques, we could reveal which visual features our species pay attention to. 
Interestingly, they use two of the simplest possible visual features, the area subtended on the 
retina by others and the logarithm of the metric distance to others. It really amazed me at first, 
but we think it is because this is a very robust strategy, even if the water gets murky. Based on 
this understanding, we were able to construct a network of influence.

8. Revealing a Behavioural Network

We revealed a hidden network of communication much like neurobiologists attempt to do. 
Since the inception of neuroscience, people have been trying to unravel the structure of the 
circuits that give rise to individual brain dynamics. Here, we are looking at the structure of a 
social circuit that gives rise to collective behaviour. And we would not have been able to do 
this without understanding the mapping of visual input to motor output. Even though these 
fish use the simplest visual feature, the network itself is complex, directed, and weighted.

9. Fish Social Networks Have High Cliquishness

These networks are not of a classic type such as small world or scale free networks; they are 
in a completely different regime. Rather, they have a somewhat grid-like nature. We believe 
that these evolved networks share some very interesting properties that could someday benefit 
us. But first we need to understand how social influence relates to network structure. If you go 
to the literature on this topic, you will frequently see assumptions such as: the most socially 
influential individuals are those with lots of neighbours, especially when the neighbours 
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have what is called a low cliquishness, i.e. a low propensity for clustering with others. These 
assumptions come from epidemiology, where they are valid. They are based on the notion that 
collective behavioural changes behave like diseases spreading through a group. Intuitively, 
this assumption makes sense: if I had a disease, the longer you and I were to stay in close 
proximity to you, the higher the probability would be that I infect you, too. But if you only 
interact with your tight little clique of friends and you do not have any friends outside that 
group, the best I could do is to infect this little clique and the infection is not going to spread. 
So, from the point of view of a virus, a high number of neighbours and low cliquishness are 
desirable conditions.

Our experiment explicitly tested, based on the actual propagation of behavioural change, 
whether this assumption is true for fish schools. As it turns out, the most socially influential, so-
called super-spreaders of behavioural contagions are those with a low number of neighbours, 
especially if their neighbours have a high cliquishness: exactly the opposite of what previous 
models would have predicted!

10.  Simple versus Complex Contagions

Why is this the case? It is largely because social contagion is a so-called complex contagion, 
whereas diseases are so-called simple contagions, to use terms from the network literature. 
Let us assume that, instead of a disease, I have a certain political view, and I try to convince 
my colleague to agree with that view. I could try all day, but maybe we do not have this 
relationship in which constantly trying to convince another individual of something can truly 
influence them. I may influence a person slightly, but he may not be convinced. Yet I could 
also influence a different colleague who later interacts with the first person and conveys the 
same information and convinces them. This means that individuals can be influenced both 
directly and indirectly through these loops. And it is these loops that are extremely important 
in terms of how behaviours spread through groups.

By understanding the relationships in a particular network, we can predict on a case-by-
case basis how an individual group will behave. In the fish tank, we know which individual 
we are going to stimulate. We can reconstruct the network dynamics from fragments of time 
and then predict very precisely not just how far a behaviour is going to spread, but exactly 
who is going to be changing behaviour and when (Rosenthal et al. 2015). Thus, the very 
complex, dynamical stochastic system of a school of fish becomes surprisingly predictable, 
but only because we are able to map the visual features they are actually using.

11.  Informed Consensus Decisions in Groups

Fish have brilliant memories. After just six trials, they can remember different targets for 
several months. However, we got no evidence that fish recognise who has that information. 
A simple individual-based model in which we assume that individuals exhibit the so-called 
schooling tendency can reconcile group behaviour with individual goal-oriented behaviour. If 
an individual is not very hungry, their goal-oriented tendency will be weak and that individual 
will not risk leaving the group. However, if the individual is hungry, then their goal-oriented 
tendency to find or move toward food may be very strong and they may leave the group.
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It turns out that one individual in a group of one hundred cannot convey information about 
a potential food source to all the others. But five informed individuals can, if they make it to 
the front of the group, which will then tend to move in their direction. And with ten informed 
individuals, suddenly and spontaneously the group moves in the correct direction. So, as the 
proportion of informed individuals increases, the accuracy of information transfer increases 
for all group sizes. For instance, 85 % accuracy in a small group of ten requires around half 
the individuals to have the information. But larger groups, like the group of two hundred in 
this example, require less than 5 % of the individuals to actually know where they are going. 
Yet, to an observer, it looks like all individuals know exactly where to go. We simulated 
migrating animal groups and cell sheets. In these large groups, a microscopic proportion of 
individuals that actually know where to go can inform the whole field of individuals or cells 
where to move.

Our real fish demonstrate very similar relationships of accuracy versus number of informed 
individuals. But again, fish are selfish individuals. What if there is a conflict with respect to 
where to go? Can they resolve this conflict, i.e. can they also make collective consensus 
decisions?

Two factors turn out to be very important: the number of individuals that want to go in 
each direction and the geometry, i.e. the angle at which they disagree. Let us consider a group 
of one hundred individuals in which five prefer to go one way and five prefer to go another 
way. Our simulations show that at a particular angular difference there is a sudden transition: 
up to a critical difference of opinion, the individuals split the difference and they will tend to 
move at the average angular difference, but at the critical angle one group wins over the other 
and the whole group follow either one or the other preferred directions of travel. Figure 2 
shows this graphically.

 

A B 

Fig. 2  (A): Equal number of individuals with opposing preferences. As long as the angle is below a critical bifurca-
tion the groups remain in averaging phase. Above the angle of a pitch ball bifurcation they end up randomly choosing 
one way over the other. (B): Unequal number of individuals with opposing preferences. The consensus selected by 
the group is the direction preferred by the majority of individuals with a certain preference.
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What if, instead of five versus five in our group of 100, we have six versus five? Now, we 
find that, as before, below a critical angular difference the group moves in the average of the 
preferred directions, but above that difference, the fish go from averaging to consensus, and 
the consensus selected is almost always the direction preferred by the majority (Fig. 3B). 
No individual is calculating; the group is collectively computing a new majority direction. 
Imagine that they are actually moving towards physical targets. As they get closer and closer, 
the angle is going to grow and grow. They will always reach the critical angle and choose the 
majority-preferred direction.

12.  Uninformed Individuals Can Break the Spell of an Opinionated Minority of Fish

What happens if a minority becomes strongly opinionated and unwilling to give up on their 
preferred direction? Will that allow them to always get their way? Our simulations (Couzin 
et al. 2005, 2011) tell us that if there is a majority of six versus a minority of five with 
a preference of 0.3 for both groups, the majority will win almost 100 % of the time. But 
if the minority becomes only slightly more opinionated, they can begin to influence the 
group dynamic. At 0.5, the minority is winning half of the time. So, if the minority becomes 
sufficiently strongly opinionated, they completely dominate the dynamics, and the group goes 
wherever the minority wants to go. However, this is only the case when all individuals have a 
preference. If there are individuals who are either uninformed or do not care where they are 
going, that changes everything.

With no uninformed individuals, the majority is still winning 60 % of the time. If the whole 
group is uninformed, they cannot come to consensus. But if only ten or twelve uninformed 
individuals are added to the group, that pushes control back to the majority. If the minority 
preference is set higher still, they will begin to control the dynamics and achieve their goal up 
to 98 % of the time. But again, if additional ten or twelve uninformed individuals are added, 
this pushes the control back to the majority. Therefore, a few uninformed individuals can 
democratise the decision making of a large group.

We think this effect is a general principle. We find it in models of collective behaviour, 
in models of coupled oscillators and neurodynamics, and, most recently, in classic physical 
spin systems. A small proportion of unbiased individuals increases the probability of reaching 
a consensus. It prevents the group from fragmenting and acts as a form of social glue. It 
increases the speed of reaching consensus. And it makes the decision-making process more 
sensitive. Individuals can be noisy as long as there is a small proportion of completely un-
tuned individuals; they can make the system extremely effective.

This theoretical study makes the verifiable prediction that uninformed individuals should 
inhibit the influence of a strongly opinionated minority. We can train our schooling fish to 
have preferences for a blue target or a yellow target. We can change the strength of their 
preferences with respect to those colours, and of course we can add in individuals that are un-
trained. As it turns out, a very small absolute number of uninformed individuals exert a very 
strong influence on the collective dynamics. A strongly opinionated minority of real fish can 
win initially, but if we add in five or ten untrained and uninformed fish, control returns to the 
majority, just as we predicted. In summary, the diversity of opinion strengths and particularly 
low opinion strength are not just adding noise, they are fundamentally changing the collective 
dynamics.
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13.  From Fish to Baboons

Very recently, we turned to what biologists would consider one of the most hierarchically 
organised societies on the planet, that of olive baboons (Strandburg-Peshkin et al. 2015). 
We put collars on almost all adults within a whole troop of baboons so that we could monitor 
where each individual is at any moment in time within sixty centimetres of accuracy.

There are many examples of why some individuals tend to go one way while other individuals 
tend to go another way, but just like in our models, these baboons would almost always come 
to a consensus. This is surprising to primatologists and the public because they often think that 
a dominant individual dictates where the group is going. But that turns out not to be the case. 
Dominant males and subordinate females both win half of the time. What matters is the number 
of individuals who care one way or another. Thus, we can replicate the bifurcation diagrammes 
in primates. This is why a general theoretical framework can be so useful.

14.  Adding Context to Group Dynamics

What we were missing, however, was the environmental context. So, this year we went 
to Kenya. Using the latest drone technologies, we mapped the physical structure of the 
environment through which baboons are moving with an accuracy of around five centimetres 
in full 3D plus a vegetation index. This had never been done before. No one had even 
considered the complexity of the environment. We developed a formal information theoretic 
approach that incorporates all the features that we found to be important, such as visible 
neighbours and different habitat features that individuals are experiencing as they move.

What we discovered was that social behaviour does not manifest itself exactly as we had 
predicted in our model. Baboons in the wild tend not to only consider the current location 
of others. Instead, they interact strongly with the paths that the others have previously taken 
through the environment. By combining all these features, we could show that by adding 
the habitat to the social information we get a much higher power to predict where every 
individual is going to move next over a range of different spatial and temporal scales.

Humans are arguably the most complex primates that we have studied. There are many 
aspects of human creativity, consciousness, and decision making that are very complex. But 
in large crowds we are actually following autopilot-like rules by using the subconscious 
mimicry of those around us. Actors can subtly manipulate where pedestrians are looking and 
how they draw their attention. We can learn a lot about these different systems.

In conclusion, it is time for our field to move beyond thinking about individuals as 
interacting particles and to think of them as probabilistic decision-making entities that base 
movement decisions explicitly on sensory information. Just over a year ago, I moved from 
Princeton to Constance to set up a new department at the Max Planck Institute. We actually 
only received money for a new building. This is pertinent because many people were saying: 
‘How do you bring physicists, computer scientists, mathematicians, biologists together?’ 
Well, we got 32 million euros for a building where we are all going to meet together. We 
are going to be working together, we are going to be mixed on different floors, and we are 
going to have superb experimental facilities, including a 15 by 15 by eight metre room for 3D 
imaging and closely watching reality environments. I think this is the way that science must 
go to really integrate modelling and experimental work.
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Evolution and Control of Society

 Rudolf Stichweh (Bonn)1

Abstract

The history of human social systems illustrates that societies can be small or large social systems, from hunter-
gatherer societies to states, civilisations and, finally, to contemporary world society. However, they all share 
common defining features such as self-sufficiency and self-reproductive closure. In sociology, descriptions and 
analyses of society are primarily based on two analytics: different forms of differentiation of society and different 
modes of sociocultural evolution. The interplay of differentiation and evolution in the history of human society 
shows that there are also different types of societal control: control by structures/memories resulting from evolu-
tion, control by goals, and control by normative and cognitive expectations. Society obviously consists of billions 
of control projects which reciprocally limit their probabilities of success. Therefore, it is much more probable that 
actors are controlled by society than that some individual or collective actor may be able to control society. Sociol-
ogy is a historical science, like evolutionary biology, and as such is not about anticipatory control but explaining 
how and why things happen.

1. What is Society?

For sociologists, society is a very important concept. In the last 2,500 years, from Aristotle 
to Niklas Luhmann, there has been a remarkable consensus on the principal characteris-
tics of societies. Of course, words change; during the antiquity the word ‘society’ did not 
yet exist. Instead, koinonia politike was the term used. Aristotle characterised society as 
self-sufficient, meaning that to exist, a society does not require any external input, such as 
resources or information. This is probably the most traditional definition of society. In our 
days, sociologists and social theorists characterise society as a system of self-reproductive 
closure: whatever societal structures and processes exist, they are produced not from outside 
but always from within society.

What is happening in a conference room is clearly a social system. But nobody would 
call it a society. The city of Weimar, where this conference is held, is also a social system, 
but again, Weimar is not and never was a society. Society always seems to be the most en-
compassing social system, comprising all the other social systems.2 Furthermore, a society 
always has a spatial dimension; we understand society as the spatially most extensive social 
system.

1 University of Bonn.
2 Cf. the first edition of the Encyclopaedia Britannica: Art. Society, Vol. III, p. 614: “The social principle in man is 

of such an expansive nature, that it cannot be confined within the circuit of a family, of friends, of a neighbour-
hood: it spreads into wider systems, and draws men into larger communities and commonwealths; since it is in 
these only, that the more sublime powers of our nature attain the highest improvement and perfection of which 
they are capable.”
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2. Types of Societies

There are four major types of society in the history of human social systems:

– Hunter-gatherer societies,
– States,
– Empires and civilisations,
– World society.

Human societies can be very small indeed and can consist of only a few dozen individuals. 
These small societies often live in self-sufficient ways, self-reproducing all the constitutive 
social structures and processes. Tens of thousands of years ago, hunter-gatherer societies 
were the only type of society, with thousands of small bands distributed over the earth. They 
were self-sufficient and did not have intensive contact with others. For this reason, it is ad-
equate to call them societies.

Then, eight to ten thousand years ago, the second autonomous type of society arose. An-
thropologists call them states. This anthropological concept of ‘state’ differs significantly 
from the way historians conceive states. For most historians, states are the territorial, mostly 
monarchical states of medieval and early modern Europe, and this implies the later global dif-
fusion of this form. For anthropologists, though, states are coupled to the rise of agriculture 
and to political and religious role structures arising in agricultural societies.

Over the last four to six thousand years, two new kinds of society arose, called empires 
and civilisations. Empires integrate numerous other societies (states and hunter-gatherer so-
cieties) based on political and military means and empires are often of short duration as wars 
are going on in them all the time. Civilisations are primarily defined by cultural boundaries. 
China is a remarkable example of a civilisation existing for at least 2,500 years. And Europe 
became a civilisation around 800 A. D. in defining itself as res publica christiana in contrast 
to the Islamic world and adding ever new social and cultural structures in the following cen-
turies.

Today, sociologists advocate the hypothesis that the societies of the world have merged 
into one large world society, consisting of 7.5 billion human individuals and billions of social 
systems (families, interactions, networks, organisations, function systems) in which these 
individuals participate by being partially included in them. If the hypothesis of world society 
is correct, then there is no sociality and no socially relevant information outside of this one 
system. In some respects, one could say that this world society obviously is a very risky social 
structure, because if something goes wrong in this large social system (climate problems, nu-
clear war), it cannot be corrected by other societies evading these problems and finding better 
solutions. In any case, the idea of world society appears to be the most promising hypothesis 
for describing the present-day social world (Stichweh 2000, 2007).

3. Describing Human Societies by their Structures of Differentiation

In sociology, social theory, anthropology, and history, there are many theories and methods 
for describing and analysing social systems. In the cognitive traditions of sociology as a dis-
cipline, there are two major approaches for the description and analysis of (whole) societies: 
differentiation theory and the theory of sociocultural evolution.
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Looking at the forms and processes of internal differentiation of society (= building of sys-
tems internal to systems) has functioned for 150 years now as one of the most prominent 
strains of social theorising Luhmann (1982). There are different forms of differentiation 
of society. The earliest and most elementary form of differentiation is segmentation. At the 
end of the 19th century, Herbert Spencer and Émile Durkheim agreed that segmentation 
is the form of differentiation of hunter-gatherer societies. On the one hand, there are loose 
associations of several very similar segments (similar role-sets with a small number of differ-
ent roles) forming one society. But, with circumstances and ecological conditions changing, 
segments can be separated again and one segment is then able to exist as one autonomous, 
self-sufficient society.

The second form of differentiation is called stratification, a social form characteristic of 
states, empires and civilisations. It is one of the major principles in the history of human 
social systems. Stratification means that the whole population is divided hierarchically into 
large collectivities. Such collectivities can be estates, classes and castes. Inequalities among 
these collectivities are the most important feature of social structure. For individual members 
of society, these collectivities are total systems encompassing all aspects of their way of life 
in the respective collectivity.

In India, for instance, there are still castes based on lineage, creating a very complex 
stratified society which, besides hundreds of castes, consists of hundreds of tribes. It is still 
customary to marry into your caste or your tribe. But India erected a super-structure that 
contains the system of castes and tribes, a democracy which in its strategic roles in politics 
and administration is based on selective participation of members of castes and tribes. In this 
respect, India seems to be unique among the world’s countries. In Europe there never were 
castes, but instead estates, or what is in French états or in German Stände. Whereas castes 
are based in ethnicity and regional origins, estates combine hierarchical rank with societal 
functions. There are the clergy, the aristocracy bound to military and political functions, the 
bourgeoisie and finally the agrarian groups in society. This is the typical set of estates in early 
modern Europe.

The third type of differentiation in the history of society is a centre-periphery structure, 
which is complementary to stratification. You can find it all over the world. There are centres 
of social life, which function as centres in the emergence of societal systems. With growing 
spatial distance from the centre, the degree of integration into society decreases. For ex-
ample, if you look at 16th-century Russia, it was not really an empire yet. There, the state was 
built around one major city, Moscow, and the laws of Russia were primarily meant for and 
sanctioned in Moscow. The peripheries were very weakly integrated into this early modern 
Russian society. Only from the 17th century on were the peripheries slowly integrated into the 
emerging Russian empire (Raeff 1983).

In present-day world society, we live in neither a segmentary system nor in a stratified 
society nor in a centre/periphery structure, although all these differentiation forms exist as 
secondary structures in the present-day world. India is a good example for the continuities of 
stratification; families and states illustrate the continuity of segmentation as a principle; and 
there are centre/periphery-relations to be observed as internal differentiations of the economy 
and of other function systems of world society. But all the mentioned cases of differentiation 
are not the first order, dominant structures of contemporary society.

For the first time in the history of human social systems, we live in world society as an 
everyday, non-negotiable reality. World society is characterised by something which sociolo-



Rudolf Stichweh

112 Nova Acta Leopoldina NF Nr. 419, 109 –115 (2017)

gists call functional differentiation.3 It consists neither of strata nor of social collectivities, but 
of communication systems to which individuals contribute but do not belong: communication 
systems such as the economy, the polity, science, education, religion, law, and art, to name 
just a few. The economy is a function system that comprises all communications which are 
related to prizes, payments and other structural components. The polity is a wholly different 
system comprising states, elections, referenda, and in democracies the universal inclusion of 
everyone as voter and in some respects even as a potential political actor in a responsible posi-
tion (Stichweh 2016). Science is yet another function system which is completely different 
from the polity and the economy. Functional differentiation is the primary form of differentia-
tion of world society. All the function systems are clearly world systems.

4. Describing Human Social Systems as Being Based in Sociocultural Evolution

Describing a society by its structure of differentiation seems somewhat static. Indeed, looking 
at structures of differentiation means looking at stabilised results of sociocultural evolution. 
Therefore, social differentiation is only a part of a more encompassing social process which 
we call sociocultural evolution. Sociocultural evolution must be distinguished from biologi-
cal evolution. Biological evolution is responsible for the diversity of plant and animal life on 
earth and this includes the emergence of hominids and finally Homo sapiens and insofar the 
anthropological preconditions of human social systems. Darwinian biological evolution may 
in some very limited form still be relevant for a few aspects of behaviour in contemporary 
society. But at some point in history, some ten thousand years ago, sociocultural evolution 
took over, realising a completely new type of information transfer that transformed the history 
of human social systems.

Looking at (transgenerational) information transfer or information inheritance, we speak 
with regard to the distinction of biological evolution and sociocultural evolution from a dual-
ity of inheritance theories (Boyd and Richerson 1985, Richerson and Boyd 2005). Both 
theories are about transferring and storing information. But the mechanisms of transferral 
and storage are radically different in the two cases. In sociocultural evolution, transfer is 
always based on communication, and there are many forms of communication, all of which 
are relevant, for example teaching and learning, persuasion, and the more indirect forms of 
communication and observation, which then induce imitation in others. Sociocultural infor-
mation is stored in expectations, rules, institutions, and other kinds of social memories. All of 
these storage mechanisms are somehow sets of condensed information and in sociocultural 
evolution they take the place which is claimed by the (human, animal) genome in biological 
evolution.

In looking at structures and transformations of sociocultural evolution, learning and edu-
cation are especially interesting institutions. Simple and complex forms of learning func-
tion as memories in sociocultural evolution. And education specialises on the transfer of this 
stored information. This happens in everyday living in the educational practices in families, 
but it is intensified in the educational activities of schools and universities. And when schools 
and even universities in the last 250 years became near universal institutions that included ev-
eryone, this established a more extended availability of plural forms of sociocultural memory. 

3 On different theories of functional differentiation: Stichweh 2013, Thomas 2013.
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But the near universal replication of the ‘same’ memories doesn’t function as a safeguard 
against changes in these memory elements. Instead, it makes it much more probable that in 
these processes of transfer changes of variations occur and some of these variations are posi-
tively selected and institutionalised.

There is an obvious coupling of sociocultural evolution and differentiation. Differentiated 
social systems are the most stable forms of storage of sociocultural information. In segmen-
tary systems, the whole society as a relatively undifferentiated unit functions as the storage 
of the information structures from which these societies are built. In stratified societies, there 
are very different cultures of information which distinguish the strata from one another. And, 
of course, in stratified societies, there must exist some semantics, institutions (e.g. property 
and forms of servitude), personal mobility and interactional practices which guarantee that 
the strata are still part of the same society.

In functionally differentiated societies, there is again a need for societal semantics which 
integrate society and for techniques and institutions which are orthogonal to functional dif-
ferentiation. Nonetheless, most relevant sociocultural information is built into the structures 
of highly autonomous and highly complex function systems. And, in some respects, the au-
tonomy of function systems is so advanced that it becomes realistic to postulate evolution-
ary processes of their own for many of the function systems of contemporary world society. 
We can observe economic evolution (Nelson and Winter 1982), the evolution of science 
(Campbell 1988), legal evolution (Stein 2009) and the evolution of art (Luhmann 1995). 
These autonomous evolutionary processes bring about their own mechanisms of variation 
and their own selection environments, all of them internal to the respective function systems.

5. Modes of Control of Society

Is it possible to control society – a society described on the basis of structures of differentia-
tion and processes of sociocultural evolution? First of all, we have to know what the concept 
of control means. If you look at an organisation, you may have a controlling interest in this 
organisation. This will normally mean that if in a conflict situation in this organisation a vote 
on a certain decision should become necessary, you will be in a position to enforce your will. 
However, this may be true in an organisation but would be an unrealistic understanding for 
a society or a functional subsystem of a society where no actor will ever have a controlling 
interest. Therefore, we need a more modest concept of control in looking at society. We could 
speak of limitations of possibility and of a space of alternative courses for a system which is 
definitely limited by control positions in society.4

In this understanding, all structures of a system and all selective features of internal and 
external environments have a somehow controlling influence on society. It is never about de-
termination which looks only at one solution and enforces this one solution, but only about a 
selectivity which limits the space of possibilities.

4 The most systematic concept of control in sociology has been formulated by Talcott Parsons. He works with a 
binary distinction of ‘information’ and ‘energy’ (which he took from Norbert Wiener) and understands control 
as the use of information for controlling energetic aspects of the realities of systems. This understanding is well 
compatible with our understanding here, to look at control as something which resides in structures and memories 
(= stabilised information); Parsons 1977.
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Under these premises, there are many modes of control. One can try to control a system with 
goals and then one will select actions and strategies of which one believes that they allow 
approximations to these goals. It is, again, not direct determination but a selection among 
alternative options. And one can try to control society by expectations. There are norma-
tive expectations and cognitive expectations. In the case of normative expectations, one will 
normally announce these normative expectations and will threaten some sanctions which one 
will use if these expectations are not met. Regarding cognitive expectations, somehow it is 
the other way around. Cognitive expectations regard states of the world and formulate how 
one expects these states of the world to be. But in formulating them one makes clear that one 
will change cognitive expectations if the respective states of the world prove to be otherwise. 
Therefore, cognitive expectations are no way to control society. It is exactly the other way 
around. By formulating cognitive expectations, one makes clear that one is willing to be 
controlled by society and one will change one’s own state depending on the changes of state 
occurring in society.

To be controlled by society is nearly always much more realistic than to hypothesise that 
one can somehow control society. And there is one last remark which should be made. There 
are always control projects which accept the limitations and fulfil the conditions stipulated 
in these few remarks. But there are always many of them instituted by many individual and 
collective actors. And in this plurality of control projects lies at the same time their most 
important limitation. What none of these individual and collective actors can anticipate are 
the many other control projects which are instituted concurrently. And this is the point where 
sociocultural evolution takes over once more and is selective and determinative in shaping 
the conditions of success for these competing projects in a way that no one can anticipate. 
Therefore, in the end, sociocultural evolution is the force which brings about results which 
nobody anticipates or predicts and which can only be understood when they are realised and 
cognitive expectations are restructured. Sociology as the science of sociocultural evolution 
then becomes – like evolutionary biology (Mayr 2004) – a historical science which does 
not know how to control society but mainly has to wait until something has come about and 
then – retrospectively – often is able to explain why it happened. And historical explanation 
does not mean explanation by one reason or cause, but explanation by a long and useful list of 
conditions (Diamond 2017) which participated in bringing about something relevant.
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Discussion of Session 4

Kirman: Dr. Couzin, you said in passing that it is very bad to be isolated because you 
know you are likely to get picked out by a predator. But there is a lot of literature on 
war regarding the question of whether it is better for ships to sail in convoys or scattered 
around. It is not so obvious to me mathematically that an isolated individual floating 
out there is going to attract more attention from some predator than a group. And my 
second question is: You said that, in some animals, intention is obvious. But bees, for 
example, vigorously indicate whether they think they have found an advantage for their 
hive. So, is there more to it?

Couzin: In relation to the first question, there is a lot of work in progress, but it has really 
been quite difficult to address this issue. So, we have done two things. One is that we 
looked at controlling one side of this equation: we had real predators, real fish predators, 
hunting and exerting a selection pressure on a virtual prey population. Nothing in the 
rules I set made the members of this virtual prey population evolve to isolate themselves 
individually. They evolved to group together and to move together.

 This relates to existing theories. For example, if a predator is at a certain distance from 
which it can detect your group, if you move close to another individual, you are a little 
more easy to see, but you have also divided your risk by two. We have shown in the real 
world that predators really struggle above a certain group size. The per capita probabil-
ity to become their meal is very low. But if we slice up these groups to make them into 
smaller entities, the risk shoots up. For single individuals, the risk is around 98 %. This 
goes back to old studies in Russia. If you put a single fish in a tank, it will be caught within 
nine to ten seconds, but if you put in twenty fish, an hour later the predator still has not 
caught anything. 

 Now, in relation to what you said about the bees, this is a very different scenario. Bees 
have evolved to work together for the benefit of their colony and have developed specific 
signalling mechanisms to communicate with each other. You can think of a bee colony 
almost as a distributed brain. The organisms that I study are selfish. We have investigated 
for a long time whether they can indicate their confidence, for example. We have a paper 
showing that they can actually do this. Their directedness is correlated with how strongly 
they influence others, even though the others are not aware of it. But they are not identify-
ing it like the bees are. Remember, in conflict situations, when there is a small propor-
tion of uninformed individuals, the strength of preferences plays no longer a role. That 
is not because their confidence has changed. It is because the dynamics of the system 
have changed. So, there are lots of non-trivial non-linearities when you start dealing with 
these collective systems. Hence, modelling has been very important. Turning to things 
like physical spin systems which have been studied for a very long time has provided us 
with insights that other types of models have never provided before.
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Kirman: Professor Stichweh, one would have thought that what structured societies, cer-
tainly early on, was to a large extent geography: being concentrated around rivers or 
being blocked into certain areas. But you never mentioned somewhat basic geographical 
considerations.

Stichweh: The physical features of the earth are external to society. As environmental con-
ditions, they are nonetheless relevant for the evolution of society. On the other hand, it is 
remarkable that human social systems have established themselves under all ecological 
conditions.

Kirman: But today, resources are still geographically located – minerals, oil, and so on.
Stichweh: Yes, of course. But, you know, it is also true that there is a new type of economy 

arising that surfaces in our information economy. Resources are still important, but not 
as important as they were for many earlier societies. You cannot explain the economic 
structures of Switzerland or Israel by pointing to external resources.

Lengauer: Dr. Couzin, it seems to me that you based much of what you said on simula-
tion. But some of these things look to me like they may invite closed-form solutions. For 
instance, are there closed-form analyses of the bifurcation states?

Couzin: I mostly base my knowledge on experiments. But you are right. The models that I 
showed you here were simulations due to time constraints. If, for example, you look at this 
story with the uninformed individuals and the role they play in terms of these bifurcations, 
in the paper, there is also an analytic model. So, we have used moment expansion and mo-
ment closure to find an analytic solution. We think this is a general principle because these 
analytic models give us a solution to the bifurcations.

Nüsslein-Volhard: You said that for motion, the lateral line does not play a role. So, what 
do they see in the other fish? Did you conduct experiments where your fish have differ-
ent sizes or different colours, species, or speeds of swimming? I mean, they must be very 
similar if they respond properly according to this model.

Couzin: It is a very interesting question, this issue of what the fish are paying attention to. 
There are two aspects. They are paying attention to things like the angle subtended on the 
retina of other individuals. The angle is subtended, not the orientation. They have no idea 
of the orientation. Christoph Koch showed earlier that there is a very simple neural model 
that allows you to do this very quick ranking of objects of different size.

 Now, that is not suggesting that this is universal. This fits for escape behaviour. One thing 
we have done is map the three-dimensional structure of the retina of zebrafish. They have 
a high-resolution region around 62 degrees coming up. We are beginning to map which 
areas of the retina are sensitive to temporal changes and which areas are sensitive to other 
features. So, we trying to get at it from the physiological angle.

 We have developed a close-looped virtual reality environment whereby we reconstruct the 
world at 120 Hertz from the perspective of the eyes of a focal individual, much like the 
Oculus Rift virtual reality headset. So, now we can have virtual photorealistic fish with 
motion-captured data or simulated data. It is unbelievable – we can simulate physical ob-
jects in the water and you cannot distinguish between them. You can have the virtual fish, 
virtual food particles, and virtual predators. I think that is going to be one of the technolo-
gies that is really going to allow us to represent the exact same stimuli on exactly the same 
part of the retina repeatedly for different individuals in order to really get the mapping 
from vision to motor response.
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Modelling Viral Infections and the Development 
of Drug Resistance

 Thomas Lengauer ML (Saarbrücken)1

Abstract

Evolution lies at the centre of several widespread diseases. In infectious diseases, a foreign pathogen invades a 
human host and exploits him or her to reproduce. In turn the infected host stages an immune response targeted at 
exterminating the pathogen. In medical care, this process is supported by drug therapy (antibiotics or antiviral drugs). 
In response to treatment, the pathogen itself evolves into forms that evade the immune system and are resistant to 
the drugs administered. Once resistance to a treatment arises, the treatment regime has to be changed to be effec-
tive against the newly evolved pathogenic strain. For some viruses, antiviral drugs are routinely combined to most 
effectively curb viral replication. The selection of a suitable drug combination rests on the analysis of the resistance 
profile of the current viral strain, is patient-specific, and is so complex that it requires computer support. Over the 
past 15 years, bioinformatics has advanced to aid in the selection of drug therapies in this setting. Bioinformatics-
assisted therapy selection for HIV infections is now clinical routine. Here, we report on the state of the art in the field 
of bioinformatics-supported resistance analysis and give perspectives on further developments.

1. The Chain of Knowledge Acquisition

Johannes Kepler (1571–1630) wanted to understand the paths of the planets in the heavens. 
He was an assistant to Tycho Brahe (1546 –1601), who at the time was working as imperial 
astronomer for the Bohemian King Rudolf II (1552–1612) in Prague. During his days in 
Copenhagen, Brahe had collected vast amounts of observational data. Kepler analysed the 
data and published a compendium of 350 pages called Tabulae Rudolfinae. Kepler basically 
performed what today would be called data mining – inspecting data by hand and then com-
ing up with laws. Importantly, Kepler’s laws were purely descriptive; he found formulas that 
fit the data very nicely, but they could not really explain why the planets move as they do. The 
causal basis was missing. Still, Kepler’s laws predicted the heavenly motions much better 
than all previous models.

Even without an understanding of why his formulas worked, Kepler’s discovery was a 
leap forward. About a generation later, Isaac Newton (1643 –1727) came up with what is 
considered the foundation of celestial mechanics: the universal law of gravity. Newton’s 
laws offered a more general view of the heavens and celestial mechanics, and they had more 
general applications than Kepler’s laws. Kepler’s laws can be derived from them mathe-
matically.

So the path of knowledge acquisition went from data collection (Brahe’s observations) 
to identifying highly predictive patterns (Kepler’s laws) that helped select the most plausible 

1 Max Planck Institute for Informatics, Saarbrücken.
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hypothesis (Newton’s laws). Finally, at the beginning of the 20th century, Albert Einstein 
(1879 –1955) incorporated Newton’s laws into an even broader theory: his theory of general 
relativity. And again, predictive power increased and the application scenario widened (to 
larger speeds and stronger gravity).

All along, there had been no way to try and control a celestial body. Then, in the mid 
1930s, Wernher von Braun (1912–1977), among others, started applying this predictive 
power to navigating the heavens, developing the first rockets that could reach the earth’s orbit. 
Now, more than 350 years after Brahe’s first glance through a quadrant, the chain of knowl-
edge acquisition had come to a robust plateau. Unifying the laws of the cosmos with those of 
the micro-cosmos has not yet been achieved, however.

2. From Celestial Bodies to Viral Infections

Today, the problem of viral replication is as mind-boggling as the heavenly motions must 
have been in Kepler’s days. The human immunodeficiency virus (HIV) is arguably the most 
intensively studied virus of all. Just like Tycho Brahe, we have a lot of data at our disposal. 
We have cohort studies of patients. We have worldwide data collection. We have voluminous 
data bases of genetic sequences. We have epidemiological data. And we have data on in vitro 
experiments with viruses.

But the interactions of HIV with its host are not yet sufficiently understood. New drugs are 
being continually developed in order to find new approaches to suppressing the virus; eradica-
tion of the virus seems impossible, in principle. But the virus usually finds escape routes by 
repeatedly developing resistance. So today, prevention is still the most successful measure in 
handling the HIV challenge.

In a way, we are standing in Kepler’s shoes: we look at the available data and try to 
learn patterns. There are global patterns in evolution as the virus adapts to human immune 
systems. There are patterns of geographic distribution, of temporal distribution and of the 
way epidemics develop. There are patterns of viral resistance to both changing characteris-

 

Fig. 1  The chain of knowledge acquisition illustrated on the example of celestial mechanics.



Modelling Viral Infections and the Development of Drug Resistance

Nova Acta Leopoldina NF Nr. 419, 121–128 (2017) 123

tics of the immune systems of the hosts and changing drug therapies. And there are patterns 
of developing viral resistance to drugs which, in contrast, are observed inside the individual 
patient.

3. Trying to Predict Resistance to Drugs

We already have predictive statistical models for viral resistance to drug therapies. But what 
is largely missing is a general theory to afford an understanding of the underlying molecular 
causes. To arrive at such a theory, we require a deeper understanding of how HIV interacts 
with the host. Ideally, we would come up with a quantitative mechanistic molecular model of 
the action of the virus inside a host cell, in different tissues, and in the body as a whole. But 
our field is still far from providing a unified or integrated theory.

Compared to Einstein’s theory, a powerful prior that was recently used to deduce from a 
few measured gravitational wave forms the size and the rotation speed of black holes merging 
1.4 billion years ago – compared to this predictive power and generality, biology is still in a 
state akin to alchemy.

4. The Molecular Basis of Viral Drug Resistance

Just one example of ongoing research will illustrate the complexity of the virus-host interac-
tion of HIV. HIV protease is a protein that cleaves other viral proteins, a key component of 
viral replication. Some HIV drugs block the active site of HIV protease, the place where the 
protein catalyses the cleavage reaction, thereby prohibiting the cleavage process.

 

Fig. 2  Space-filling representation of HIV protease. Certain amino-acid residues relevant to drug resistance are 
represented as green and blue sticks.
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But as the genome of the virus changes from generation to generation, the structure of HIV prote-
ase changes in very subtle ways. Some of viral descendants produce a structure for HIV protease 
that rejects previously effective drugs but can still perform its cleavage function on viral sub-
strates. Resistance mutations like these can appear not only around the active site but all over the 
protein (see Fig. 1). To this day, nobody understands how these very subtle changes can leave the 
protein intact while rendering drugs ineffective – not because of a lack of data, but because the 
energetics of the molecular processes of drug binding and cleavage are not properly understood.

Mazen Ahmad, a very talented computational biophysicist in my lab, investigated the en-
ergetic balance of HIV protease and found that, as the protein binds a substrate, its free energy 
changes only minutely. In contrast, its enthalpy and entropy, which add up to yield the free 
energy, both oscillate wildly. He found a new way of decomposing the free energy into terms 
which facilitate a more specific energetic analysis of the processes that underlie resistance 
development. We are currently applying these findings to data on drug resistance of the HIV 
protease. In this way, we hope to finally understand the molecular basis of the development 
of drug resistance.

5. Estimating Viral Drug Resistance with the Computer

HIV is extremely dynamic. It exists in myriads of variants that can be quite different from each 
other. Different viral strains can differ in up to 20 % of their genome – an enormous fraction – 
while still performing all of HIV’s functions. The virus evolves very quickly inside patients. It 
is the most dynamic virus we know, much more dynamic than the influenza virus, for instance.

Each patient harbours a diverse population of viral strains. A single drug can only suppress a 
fraction of these strains and, therefore, is normally not sufficient for successful treatment. Thus, 
the goal of treatment is to administer a suitable combination out of an arsenal of currently over 
two dozen drugs. Each population of HIV inside a patient has its own molecular fingerprint and 
no two patients carry the same one. And that fingerprint changes with time. Our job is to infer 
viral drug resistance from these fingerprints and suggest promising drug combinations.

We do this by data mining. Our database comprises over 150,000 therapy changes through-
out Europe, collected by the EuResist Consortium of which the Arevir database is the German 
part. The current drug arsenal affords over 1000 viable treatment options from which we select 
the most effective ones, a combinatorial problem that we attack with statistical learning tech-
niques (see Fig. 3).

In vitro assays for measuring viral drug resistance are not feasible in clinical routine. Lab 
tests are expensive, take between 10 and 20 days, and can only be done in a few high-safety labs. 
So instead of performing a resistance test on the individual patient in the lab, we use the avail-
able data on resistance and treatments to build statistical models that can suggest viable treat-
ments for patients based on the knowledge of the viral genomes they harbour. This in silico re-
sistance test takes less than a day and entails only the moderate cost of viral genome sequencing.

6. Rules-Based Systems for Resistance Prediction

There are two ways of finding specific treatments for a specific viral fingerprint: expert rules 
and statistical models. Expert rules have been used since the beginning of the millennium and 
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have definite advantages and disadvantages. The idea is that experts regularly use the results 
of in vitro resistance tests, knowledge from the field literature, and their clinical experience to 
craft rules such as: ‘If there is a mutation in position X of the target protein of the virus then 
do not give drug Y’. Rules of this kind were formulated for each of the available drugs. Expert 
rules are hand-crafted by committees and modified regularly. Currently, there are about 400 
expert rules for HIV. One advantage of expert rules is their immediate availability. Further-
more, they are expressive and easy to understand. And they are convincing because they come 
with a seal of authority.

But expert rules also have clear disadvantages. They have the bias inherent to committee 
decisions. Simple rules do not apply in complex situations. If a patient harbours a virus with 
many mutations, the typical answer is: ‘You can’t do anything for that patient anymore. His 
virus has too many mutations’. However, this answer is not always all there is to it.

7. Statistical Models Outperform Rules-Based Systems in Difficult Situations

Our statistical models are created in an entirely different manner. The only manual process is 
managing and creating the database of 150,000 therapy exchanges. All other steps are algo-
rithmic. The idea here is to let the data speak for themselves, to let the data identify the resis-
tance mutation. Statistical models tend to be more discriminatory than expert rules; after all, 
they analyse a high-dimensional space (comprising dozens of drugs and potentially millions 
of genetic variants). In this symposium, several presenters mentioned that humans cannot 
cognitively deal well with high-dimensional spaces. Algorithms, in contrast, can be applied to 
highly complex situations. Algorithms are free of bias although the underlying databases are 
not. However, there are mathematical approaches for de-biasing databases, as well.

 

Millions of HIV variants Over two dozen drugs
Hundreds of therapy combinations

Basis: Data on over
150,000 therapy changes

Resistance analysis with
statistical models

Fig. 3  The challenge of finding the most effective drug combination for individual HIV sub-sets.
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Here is how data-driven resistance analysis works: our geno2pheno2 server, which is openly 
available over the internet and can be queried without cost, receives the sequence represent-
ing the viruses harboured by a patient as input. This sequence is then compared to the wild-
type reference sequence to identify the mutations of the patient-specific viral population. Up 
until the beginning of the millennium, such servers were purely rules-based and, for highly 
therapy-experienced patients, the rules frequently said: ‘No therapy option remaining’.

The geno2pheno server has a statistical prediction model that is trained on the large EuRe-
sist Database. This model estimates the resistance level for each drug. If the resistance level 
stays below a certain threshold, then the drug is still somewhat effective against HIV and may 
become part of the patient’s individualised combination treatment. Moreover, our model also 
identifies mutations responsible for reducing resistance, something that is very difficult to 
do with rules-based systems. It turns out that our model can find a drug combination even in 
cases in which rules would have produced a negative result.

On the geno2pheno server, we offer several resistance analyses, some of which have been 
subjected to numerous retrospective validation studies. The server is widely used in clinical 
routines and recommended by the German-Austrian and European therapy guidelines. Mean-
while, the success rate of HIV therapy has risen dramatically. Between 1992 and 2000, the 
failure rate for HIV treatments was about one third (see Fig. 3). Between 2008 and 2010, it 
had declined to one tenth. This was not only due to computer-based resistance analysis, but 
also to the invention of new drugs. HIV is among the very few scenarios where computer-
assisted selection of drugs combinations has become clinical routine. 

 
Success

Failure

Success

Failure

Success

Failure

Success

Failure

2008-2010

Success
Failure

Success
Failure

Success
Failure

Success
Failure

Fig. 4  Increase in HIV therapy success rate. Data taken from the EuResist Database.

Of course, statistical models have their own limitations: a lot of data is required for them to 
generate reliable results. Typically, when a new drug arrives on the market, there is not yet 
sufficient resistance data to incorporate it into our model. For Hepatitis B and Hepatitis C, for 
instance, our server still only works with rules, not with statistics.

And rules are still a very strong competitor. Doctors love rules. Rules are non-mathemati-
cal; they speak the language of people. For HIV, there are several rules-based servers that are 

2 For further information see: www.geno2pheno.org (last accessed: 10. May 2017).
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widely used. But for certain resistance phenotypes, there are no rules. And for these pheno-
types, the statistical model is really without competition.

But the largest obstacle for bringing data-driven prediction engines to clinical practice is 
the lacking interpretability of their predictions. The more ‘intelligent’ an engine is the harder 
it is to bring it to be used routinely on patients. In fact, to our knowledge, no engine that 
predicts not only the resistance level of the virus to individual drugs but suggests whole drug 
combinations has made that step yet. This includes an engine that we have been offering for 
over ten years. The reason is that therapy prediction engines do not justify their therapy pro-
posals in terms understandable to a medical practitioner. The only argument they can give is 
of the character: ‘a support vector machine in a space with many thousand dimensions found 
that this therapy is far away from the decision boundary on the side indicating effectiveness 
of the therapy’ – which is entirely unhelpful to a physician.

8. From Prediction to Understanding

The methods I discussed are applicable, in principle, to all diseases that

– have an evolutionary character involving resistance development,
– are sufficiently long-term for the cycle of resistance development and treatment change to 

be iterated multiply, and 
– afford a sufficiently large arsenal of drugs.

This applies to infectious diseases such as Hepatitis B, Hepatitis C, and tuberculosis – a bacte-
rial disease. However, the most wide-ranging future perspective is in cancer. Tumour cells have 
an evolving parasitic genome that can be considered the pathogen in this case. But the tumour 
genome is much more complex than the viral genome. For a malignant cell, there is a large 
number of paths to resistance to chemotherapy, too many for a purely data-driven approach.

For curbing viral resistance, we are more at Kepler’s level of understanding than at New-
ton’s or Einstein’s. We do not have a general theory, so our predictions have limited reli-
ability. Our success rate is still substantially lower than we want. How can we increase it? 
One answer to that question that is frequently heard is: ‘More data!’ I do not subscribe to this 
view. With blind data analysis alone, we will not get much further. What we need is a bio-
mechanistic model, a model based on actual molecular understanding of resistance pathways. 
This will require a global research effort, but I believe that there is going to be much progress 
within the next decade.

In summary, in the absence of causal knowledge, a data-driven approach can pave the way 
to predictive success. However, we cannot predict things with certainty without understand-
ing them. There are many people who think, ‘Since you have that much data and you can pre-
dict – what else do you need?’ But data-driven approaches deliver unreliable results, leading 
to both patients who are denied therapies due to false calls of viral resistance and others who 
receive ineffective therapies due to undetected resistance. No HIV patient wants to belong to 
either category.

Even though data analysis cannot bring forth causal knowledge on its own, it can still 
help tremendously in gaining such knowledge. In the old days, it took a genius like Newton 
to figure out which hypothesis to test. Today, an introductory data analysis can act as a filter 
that reduces an initially overwhelming number of testable hypotheses to a manageable set 
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of hypotheses that is enriched with promising hypotheses. Subsequently, this subset can be 
analysed with other means, e.g. lab tests, in order to afford causal understanding.

In the HIV scenario, data analysis can point to promising drug combination treatments. 
But the availability of data should never create the illusion of safety or immobilise us with 
respect to basic research. Data analysis and theory are not opponents. They can both work in 
concert, with data analysis being the first step and theory building being the second step in the 
chain of knowledge acquisition.
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Global Connectivity and the Spread 
of Infectious Diseases

 Dirk Brockmann (Berlin)1

Abstract

The spread of infectious diseases has become a global concern. In light of the recent outbreaks of Zika in South Ame-
rica and MERS in the Middle East as well as the 2013 Ebola crisis, researchers are developing a range of methods and 
strategies to mitigate disease spread. One of the key challenges is to understand the key features that shape patterns 
of global disease spread. The complexity and redundancy of global transport networks suggests that the systematic 
identification of hidden patterns in spatially incoherent disease dynamics is next to impossible. Here, we will discuss 
how the concept of effective distance, as a replacement for conventional geographical distance, helps us understand 
global disease dynamics and how it can be employed as a new technique for developing predictive tools and means 
for testing effective containment strategies.

1. Tools for Predicting the Dynamics of Human Infectious Disease

‘Can we control the world?’ is not a humble question. Any person with common sense would 
immediately answer with a ‘no’. Being humble is undoubtedly quite important when talking 
about infectious diseases and about trying to tackle or understand their spread. On the one 
hand, infectious diseases are natural phenomena. But especially human infectious diseases 
are also social phenomena. And the way we move across the globe plays an important role in 
the spread of these diseases.

In 2009, an outbreak of the influence virus H1N1 started in Mexico and then spread across 
the world. There was the MERS coronavirus in Saudi Arabia and, of course, the Ebola crisis. 
And now there is Zika. The gut feeling of most people is that these outbreaks are happening at 
an increased rate. This is also reflected by the fact that Hollywood is producing more movies 
about the spread of diseases, blockbusters such as Outbreak or Contagion. Their plot: there is 
a huge pandemic and everyone panics, and finally a hero saves the world or fails to do so. The 
real story is more complex and more interesting.

2. The True Story of Infectious Disease Spread

The human population is increasing and half of mankind now lives in urban areas. At the 
same time, global mobility is at an all-time high. Together, these developments are bad for 
humans and good for pathogens. Then again, there is a kind of revolution happening in epi-
demiology. As Dr. Lengauer showed us, a lot of data is available today, data we can use to 

1 Humboldt University of Berlin; Robert Koch Institute.
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investigate the properties of infectious diseases. Beyond that, a global network of molecular 
surveillance is now at our disposal; viral or bacterial genomes are routinely sequenced and 
this micro-evolutionary information is used to model transmission pathways.

3. Networks of Epidemiology

One type of data that is pivotal in reconstructing and predicting pathways of transmission 
are host mobility networks. Figure 1 depicts a global host mobility network, the worldwide 
air transportation network. Each node represents a location (airport) in space. Links between 
these nodes are connections between these airports. In contact pattern networks, nodes are 
individuals and links are contacts and thus potential transmission pathways between individu-
als, quantifying, for instance, how much time infected people spend together.

 A B 

Fig. 1  (A): The worldwide air transportation network. This network has approx. 4,000 airports and 25,000 direction 
connections. More than three billion passengers travel on this network each year. Every day, all passengers travel 
more than 15 billion km in total; that is three times the radius of our solar system. (B): A contact pattern network bet-
ween 1,000 students. Contacts are reconstructed by measuring individuals’ proximity to each other using cell-phone 
Bluetooth information. Strong links reflect pairs of individuals that spend a lot of time together.

Mobility networks like the worldwide air transportation network are very important in study-
ing global disease dynamics. Contact pattern networks exist on a much finer scale and help us 
understand transmission dynamics in groups of individuals.

A few decades ago, researchers had to make a lot of assumptions about the rate at which 
individuals interact. Quantitative experiments had not yet been conducted. Today, however, 
we have means of reconstructing individual face-to-face interactions. For example, a few 
years ago, a colleague of mine, Sune Lehmann of the Technical University of Denmark 
(DTU), purchased 1,000 cell phones and distributed them among a random group of DTU 
students. This was the deal: the students got a free cell phone and in return the cell phones 
monitored everything the students did with high temporal resolution over the course of 
months or years. The phones provided information about how the students moved around in 
Copenhagen and how much they interacted physically and on social media through texting, 
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etc. With this data, the researchers could investigate whether social media interactions were 
predictive for real world interactions. I started a collaboration with Lehmann on a particular 
aspect of their data: the amount of time any two students spent together over the course of a 
longer period, say three months.

Some students spent a lot of time in a group of people, while others spent a lot of time with 
only one other person: they were dating, so they spent most of the nights together, which is 
a substantial fraction of a 24-hour cycle. The data set revealed other interesting phenomena, 
like strong links breaking or strong links forming. There even were some triplets in the data! 
We can use this kind of technology to quantify important factors of disease transmission: for 
instance, how much time any two people spend together on average. For the DTU students, it 
was about 3.6 minutes on average. But the distribution is very broad: some people spent ten 
hours a day together and others only seconds.

4. Digital Epidemiology

Experiments like the Danish cell phone study and similar projects kicked off a whole new 
field called digital epidemiology. Today, more and more of this data is collected on the web. 
Statistical models use these growing big data sets to extract information about the dynamics 
of human infectious diseases. In addition to mobility and contact patterns, we have genetic 
information. Powerful algorithms can exploit this data to derive statistical inferences about 
the near future, similar to what is happening in meteorology.

This approach is very powerful, but it is also risky, especially because large datasets, pow-
erful computers, and sophisticated statistical methods invite researchers to treat data as a black 
box. Different, parameter-rich methods applied to the same data can yield contradictory re-
sults. Recently, an interesting paper was published in which researchers gave a data set to 
different teams of scientists, 29 teams in total. They were given a data set on soccer referee 
decisions and were asked to determine whether the referees were more likely to hand red cards 
to players with dark skin than to those with light skin. Twenty teams – 69 % – found a statisti-
cally significant positive effect and nine teams – 31 % – observed a non-significant effect.

In addition, correlation is not causation. Just because observation A in a data set correlates 
strongly with observation B does not mean that A causes B, nor that B causes A, nor that both 
are caused by a third effect. The book Spurious Correlations, published by Harvard student 
Tyler Vigen, beautifully illustrates this limitation of retrospective, big-data-driven research. 
For example, there is a very strong correlation between the number of sociology doctorates in 
the US and worldwide non-commercial space launches. The human brain spots correlations 
all the time. It is a powerful tool for finding patterns in data, but we often cannot know if these 
patterns are meaningful if we do not understand the underlying mechanism, as Dr. Lengauer 
pointed out earlier.

5. Mobility and its Effect on Disease Spread

So, in trying to understand global disease dynamics, we try to keep our questions simple. For 
instance, we would like to know where a pathogen came from and when and where it will 
likely appear next after an outbreak. In an ideal situation, a disease spreads like a wave at a 
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constant speed, making a calculation of subsequently affected areas easy. During the bubo-
nic plague, this assumption of constant speed actually corresponded to reality because most 
people did not travel very far. But today, that is no longer the case, as illustrated in Figure 1 
on the left. Each day, humans are travelling about 14 billion kilometres on planes alone, three 
times the radius of our solar system. In just a day, you can go from anywhere on the globe to 
anywhere else. What does this long range mobility mean for spreading phenomena? Com-
puter simulations show that today, because of long-range traffic, an initial outbreak can yield 
new secondary outbreaks far away. Geographic distance to the original outbreak location 
correlates no longer well with arrival time, and the spatial pattern of disease spread is spatially 
incoherent. Regular wave patterns no longer exist. Educated guesses about when the disease 
is going to hit a particular location become next to impossible. We can actually see this in real 
data: Figure 2 shows a simulation of outbreaks based on today’s mobility network and two 
real recent events, H1N1 in 2009 and SARS in 2003.

 

A B C 

Fig. 2  (A): A computer simulation for a virus like H1N1 with a hypothetical outbreak in Hong Kong. (B): Actual data 
from the 2009 H1N1 outbreak. (C): Actual data from the 2003 SARS outbreak. Dg: distance of a particular location 
to the origin of the outbreak, Ta: time of arrival at that particular location.

The simulation still shows a correlation of distance and speed of disease spread of about 250 
to 400 kilometres per day. This is about 100 times faster than the Black Death in the 14th cen-
tury. However, both in the simulation and during the actual events, mere geographic distance 
is not a predictor of arrival time. That is why we have to develop mechanistic mathematical 
models and algorithms that take into account global connectivity and have to rely on compu-
ter simulations to make predictions on the spatio-temporal pattern of modern, global disease 
dynamics.

6. Mobility-Based Models of Disease Spread

Computational, predictive models for global disease dynamics are similar to weather forecast 
systems. Researchers are putting a lot of effort into making them more precise and reliable. 
There is even a tool for making global disease dynamics predictions, called “GLEaM”, the 
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Global Epidemic and Mobility Simulation Tool. It is very sophisticated and integrates a lot 
of information and data. You can choose from thousands of origins, specify the number of 
available hospital beds in that location, the global mobility, the commuter traffic, and much 
more. The hope with models like these is that the more data they are fed, the more precise 
their predictions will get. This is a major direction of research in this area. And even though 
they have become quite good at making short term predictions, there are several issues with 
these mechanistic models, and I remain sceptical for many reasons that an emphasis on com-
putational detail is by itself a promising path to take. One of them is that dynamical systems at 
the core of computer simulations require the correct set of parameters (including their values) 
and initial conditions. But in situations like the Ebola, Chikungunya, MERS or other emer-

 

Fig. 3  The network depicts the perspective of the Berlin airport Tegel (TXL, central red node) using the concept of 
effective distance. All airports of the worldwide air transportation network are arranged in a circle, the distance to the 
centre is the effective distance from TXL to the respective airport. The tree represents the most probable spreading 
route from a hypothetical outbreak in Berlin. A number of airports that may be geographically distant, for example 
Beijing (PEK), are effectively close to TXL and a gateway to many other airports.
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gent epidemics, the initial conditions and the disease parameters are exactly the unknown 
factors. So, in situations where we actually need these models, we cannot use them reliably.

7. Redefining Distance

Recently, we started playing with one of the parameters of our statistical models: distance. 
Looking at the worldwide air transportation network, we realised that from the point of view 
of a pathogen, cities like London or Frankfurt are much closer to New York than many small 
American towns, simply because there is more traffic connecting both places. You can rede-
fine distance in this manner for any two locations on the planet to restructure the air traffic 
map. We developed a mathematical theory that accounts for this fact and introduced a new 
distance measure that is small between places that are strongly connected by traffic and large 
for places that are connected by small passenger flux. When this theory is applied and visu-
alised, radial distances become what we call effective distances (see Fig. 3). Now you can 
look at places that are relevant for disease dynamics, like Freetown in Sierra Leone, where 
the Ebola outbreak happened. London Heathrow, for instance, is very close to Freetown effec-
tively. Beijing is not far from Sierra Leone either, as connections go through Heathrow. This 
way, we can find the most effective spreading routes and identify the nodes in the network that 
are most effective for spreading diseases.

Effective distance maps are more than just an illustration of how the world looks from 
a different angle. Figure 2 shows the result of a computer simulation for the two pandemics 
already (SARS and H1N1) discussed above.

In Figure 4B, the spread creates a concentric pattern on the world map of effective dis-
tance. Now we can measure the speed of the disease wave and predict when the epidemic is 
going to hit other locations. This way, we get a much higher predictive power.

8. Understanding Disease Transmission

The speed at which diseases travel through populations depends not only on effective distance 
between locations, but also on the way the disease is transmitted between individuals in those 
locations. Traditional epidemiology usually tries to extract some limited information about 
transmission dynamics from data recorded during recurrent epidemics or endemic diseases. 
In contrast, it would be helpful if one could inject a pathogen into the population, record how 
it spreads, and then repeat that experiment 1,000 times in order to develop a correct theory – 
but of course we cannot do that. Nevertheless, with good contact pattern data we can appro-
ximate this experimental scenario.

Vaccination is a very powerful weapon against some infectious diseases. Today, a num-
ber of eradication programmes are in place, for instance against polio and measles. A very 
simple question in this context is: what fraction of the population must be vaccinated in order 
to eradicate a disease? It has to be a number between zero and 100 %. What that number is 
depends on the properties of the disease itself. Another number is crucial in finding the criti-
cal vaccination threshold for eradication. It is called the basic reproduction number or R0. It 
is the average number of secondary infections caused by an infected individual and describes 
at which exponential rate a disease can spread through a susceptible population. For influenza 
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Fig. 4  An illustration of the usefulness of effective distance in a hypothetical outbreak scenario, the same as in Figure 
2 with an initial outbreak location in Hong Kong. (A): Depicts the effective distance perspective of Hong Kong onto 
the rest of the world. (B): A computer-simulated pandemic in the effective distance representation compared to the 
traditional visualisation. With the effective distance approach, complex spatio-temporal patterns are mapped onto 
generic concentric wave fronts that are much easier to quantify, understand, and employ in pattern based predictions. 
Panels (C), (D) and (E) depict the same information as Fig. 2, the only difference is that geographic distance is repla-
ced by effective distance, which is a much better predictor for epidemic arrival times.

 

Fig. 5  A simulated epidemic on student interaction data. Violet: Prevalence data from classical infection models 
based on basic reproduction values. Green: Actual contact data.
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it is maybe 1.4 to four. For measles, the basic reproduction number is very high: 12 to 18. In 
a susceptible population, measles will explode. Epidemiologists have been using an equation 
to estimate from R0 the critical vaccination threshold: 1 – 1/R0. For instance, if R0=2, 50 % 
would have to be vaccinated. For measles, you get a number between 91 and 96 % because 
its R0 is so large.

The equation for the critical vaccination threshold comes from a very simple mechanistic 
model that rests on a couple of very crude assumptions: all individuals behave the same way 
and are identical, any pair of individuals is as likely to interact as any other pair, fluctua-
tions do not matter, and the system is in equilibrium. However real contact patterns between 
people are more diverse: they show strong temporal modulations, such a circadian or weekly 
rhythms. Groups form and individuals may leave a group and join another. In a nutshell, ev-
eryone does not interact with everyone else in the same way.

So instead of using a crude theory to derive critical vaccination thresholds, we ran virtual 
Bluetooth epidemics on the Copenhagen student interaction data. Figure 5 shows an epi-
curve that epidemiologists usually look at and the actual transmission rates in the Copenha-
gen mobile phone epidemic.

The actual contact patterns are very jagged. And it is these contacts during which infected 
individuals and susceptible ones meet. Usually, this kind of data is not accessible in tradition-
al epidemiology. Instead, prevalence models are relatively smooth curves. However, critical 
vaccination thresholds depend on the particular patterns of interaction.

9. Virtual Vaccination Programmes Find Real Critical Vaccination Thresholds

We ran thousands of these virtual epidemics and virtually vaccinated individuals, measured 
the critical vaccination threshold in the population as a function of disease parameters, and 
found that not only R0 matters, but also the infectious period. The simulations show that 
hypothetical critical vaccination thresholds overestimate those actually required for disease 
eradication – at least in a population of Danish students. As a next step, we aim to find more 
representative populations to apply this novel method to more realistic scenarios.

In summary, the spread of infectious diseases around the globe depends on both global 
mobility and the transmission dynamics within populations. We could show that using effec-
tive distance as a model parameter instead of geographic distance increases predictive power 
considerably. Novel experimental methods, such as mobile phone interactions, now provide 
a type of data previously inaccessible, allowing a more accurate estimation of host-to-host 
interaction. Together, these novel approaches can increase the ability of data-based statisti-
cal modelling to predict the most likely paths of disease spread in our highly interconnected 
world. 
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Discussion of Session 5

Helbing: Was your result on the critical vaccination thresholds bad news for pharma com-
panies?

Brockmann: The system predicts that we do not have to vaccinate as much. But, despite 
this, there still was a big measles outbreak in Berlin last year. The reason cannot be a 
self-sustained measles epidemic. Instead, there were local outbreaks. So even if we are 
actually above this critical vaccination threshold, we may still have local outbreaks due to 
the ‘injection’ of the disease at certain places.

Friedrich: If I understand correctly, HIV treatment is a fantastic example for a successful 
individualised approach or individualised medicine. But you still ask for a theory, since 
the data are not sufficient. Do you have a strategy? For instance, you showed us the studies 
of HIV protease – would it help to develop a theory?

Lengauer: It wouldn’t help our patients in the short term, I think. But, for the first time, we 
would be able to speculate about mutations that we have not seen before. We could deve-
lop new drugs with the added knowledge of what resistance mutations they might evoke. 
This knowledge could lead to better drugs, which would help patients in the long run. 
What would help patients more immediately is a reliable mechanistic model of virus-host 
interaction. We are happy that, with blind data analysis in this system, we already achieve 
high predictiveness of drug resistance. But this is not true for all systems. For instance, it 
is unlikely to be the case in cancer. And it is difficult to recognise in advance whether a 
system submits to pure data analysis without mechanistic knowledge or not.

Guest: You both commented on the importance of the quality of data. More data may not be 
providing all the solutions, as Dr. Lengauer said. Dr. Brockmann just added that the 
data can be biased and that there are mathematical methods to de-bias them. Could you 
comment on the importance of the quality of the data? In particular, what are the ways to 
de-bias data?

Lengauer: One approach in personalised medicine is to train models only on data from 
controlled studies. That is the approach we are using. Controlled studies are naturally 
limited in scope with, say, a few hundred highly controlled patients. Still, we have col-
lected 150,000 therapy exchanges based on such data. Our geno2pheno server is receiving 
queries involving new data daily. But we do not store this data, and we do not use it for 
training because it does not come from a controlled setting and because the users would 
not appreciate that.

 The other approach is the one Google Flu uses, namely to take data from everywhere and 
basically monitor every sneeze in the world. They have to take into account the risk of 
people unintentionally corrupting or even intentionally faking that data. I don’t believe 
that just increasing the volume of data without worrying about its quality is going to be 
the solution, so we are sticking to the first route.
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 De-biasing always means removing biases. But biases can only be defined in terms of re-
ference. And this reference is subjective. In HIV therapy, for instance, the Italian reference 
is different from the German reference. Italians rule out different drug combinations com-
pared to Germans. So, the de-biasing issue is a very difficult one. The only thing I can say 
at this point is that absolute objectivity does not exist. When you de-bias something, you 
de-bias it with reference to your own view of the world. We can only offer the methods for 
doing this. The view of the world is inherently subjective and should be supplied by the 
respective medical community.

Brockmann: The word ‘data’ is so very broad that it may be helpful to differentiate what we 
mean by it. Some data comes out of controlled experiments. That data can be huge, too, 
like the data that came out of the machinery that measured gravitational waves. Then there 
is genetic information like meta-genomic data. This is clean data.

 In contrast, Google Flu Trend data or the data that is scraped off the internet is not clean. 
It has biases that you do not even know about. You just look at something and then you 
scrape it off and then you see signals in it. But you cannot repeat this. You cannot test it in 
any way by generating a new data set. I find that very problematic, although I do it myself. 
But you should be very careful, and there are many people who are not.

Guest: Is data about individual genome profiles included in your models? Or, what happens 
if it is included?

Lengauer: We are only working with the viral genome. The viral genome has 10,000 ba-
ses. It is not large at all. We have also been looking at the relevant region in the patient 
genome, the HLA genes, which is also comparatively limited. We have conducted initial 
studies, but it looks like it is not worth the trouble of including this region in the analysis. 
Otherwise, we would have to change clinical procedures and patients would have to be 
genotyped. All of this is difficult. People in clinical routines usually resist it unless it is 
necessary. And, so far, it has not seemed to be pressing enough.

Guest: There is also the problem of some treatments that are very complicated and depend a 
lot on the way in which they are taken. And that, of course, would depend on the popula-
tion of patients and whether or not they are actually going to respect those rules. So is 
there a sort of second qualification?

Lengauer: Yes. That the computer suggests the ideal treatment is definitely an overstate-
ment. What we do is provide an interpretation of the viral genome. The doctor takes this 
interpretation and crafts his or her own therapy. They do not automatically take up what 
the report says. And that is due to all the things we do not consider, for instance, whether 
the patient can tolerate a drug or how committed the patient is to taking the drugs. Of 
course, sometimes patients do not take the drugs and they claim to have taken them. But 
this is a quite difficult area. Sometimes, the genomic fingerprint of the virus is indicative 
of the patient’s compliance. But the patients cannot be expected to tell the truth in this 
respect.
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Modelling the Economy as a Complex Interactive 
System: Unintended Consequences

 Alan Kirman (Paris, France)1

Abstract

Economic theory has developed in such a way as to be consistent with the socio-political liberalism which became 
dominant after the Enlightenment. The doctrine of laissez faire and the argument that leaving people as much as 
possible to their own devices would lead to a socially desirable state was based on the belief that an ‘Invisible hand’ 
would lead society to such a state. As economic theory developed, it was never able to give a formal justification 
for this assertion. The discipline was confined to the study of the welfare properties of equilibrium states without 
explaining how they were attained. Thus, crises were said to be generated by exogenous shocks and not to come from 
within the system. Changing our two-hundred-year old paradigm to thinking of the economy as a complex adaptive 
system allows us to consider economies out of equilibrium and the fact that they may self-organise into states which 
are far from optimal. Such systems with their feedbacks are unpredictable and policy measures can generate unex-
pected consequences. Accepting this idea may lead to more realistic and more modest economic theory.

Over the last two centuries, there has been a growing acceptance of social and political 
liberalism as the desirable basis for societal organisation. Indeed, this is the basic paradigm 
on which modern economic theory and our standard economic models are based. It was Adam 
Smith (1723 –1790) who in 1776 first suggested that when individuals are left to their own 
devices, the economy will self-organise into a state which has satisfactory welfare properties.

This paradigm, however, is at odds with what has been happening in many other disciplines. 
In fields such as statistical physics, ecology, and social psychology, it is now widely accepted 
that systems of interacting individuals will not have the sort of behaviour that corresponds to 
that of the average or typical particle or individual. In economics, however, this realisation has 
not had much effect. While other disciplines moved on to study the emergence of non-linear 
dynamics as a result of the complex interaction between individuals, economists relentlessly 
insisted on basing their analysis on the concept of rational optimising individuals, acting as 
though they were isolated particles.

Yet, this paradigm is neither validated by empirical evidence nor does it rest on sound 
theoretical foundations. It has become an assumption. It has been the corner stone of economic 
theory despite the fact that the persistent arrival of major economic crises suggested that the 
analysis was flawed. Experience suggests that amnesia is prevalent among economists and 
that, while each crisis provokes a demand for new approaches to economics (witness the 
birth of George Soros’ Institute for New Economic Thinking), in the end, inertia prevails and 
economics returns to the path it had been following all along.

1 CAMS, École des Hautes Études en Sciences Sociales and Aix-Marseille University.
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1. Confidence in Our Theory

There has been a remarkable tendency to use a period of relative calm to declare victory 
over the enemy. Recall the declaration of Robert E. Lucas Jr. (*1937), Nobel Prize winner 
and President of the American Economic Association in his presidential address in 2003, in 
which he said: “Macroeconomics in this original sense has succeeded: its central problem of 
depression prevention has been solved, for all practical purposes, and has in fact been solved 
for many decades”.

In 2004, Ben Bernanke (*1953), later to become chairman of the Federal Reserve Board 
and to face one of the two greatest crises of the twentieth and twenty-first centuries, celebrated 
the ‘Great Moderation’ in economic performance over the previous two decades, which he 
attributed in part to improved economic policy making. He was referring to the fact that the 
evolution of the macro-economy had become much less volatile.

Both economists and policy makers had been lulled into a sense of false security during 
this brief period of calm. Whilst our models worked well during this period, one is tempted 
to ask: Would not any model have done so? Learning to sail when there is no wind does not 
equip one to face storms. What we need are models to help us understand and deal with crises 
rather than clinging to models which are acceptable in calm periods but must be abandoned 
in times of crisis.

2. The Crisis since 2008

Then came 2008, and, as always in times of crisis, commentators and policy makers started to 
ask why economists had not anticipated the onset and severity of the crisis. Even Her Majesty 
the Queen of the United Kingdom was moved to ask ‘her economists’ what had gone wrong. 
She received the following reply from the British Academy: “So in summary, Your Majesty, 
the failure to foresee the timing, extent and severity of the crisis […] was principally the 
failure of the collective imagination of many bright people […] to understand the risks to the 
systems as a whole”.

This was not very reassuring, as those same bright people had previously portrayed 
themselves as ‘scientific advisers’. The Economist had on its cover an ice cream labelled 
‘Modern economic theory’ which was melting, with the title, ‘Where it went wrong and how 
the crisis is changing it’. But little change has really happened. Jean Trichet (*1942), the 
Governor of the European Central Bank, made an appeal for economists to rethink the very 
foundations of economic theory. Adair Turner (*1955), the head of the Financial Services 
Authority in the U. K., went even further and held economists responsible for the crisis. He 
said: “But there is also a strong belief, which I share, that bad or rather over-simplistic and 
overconfident economics helped create the crisis. There was a dominant conventional wisdom 
that markets were always rational and self-equilibrating, that market completion by itself 
could ensure economic efficiency and stability, and that financial innovation and increased 
trading activity were therefore axiomatically beneficial”.

These statements are witness to the dissatisfaction on the part of policy makers shared by 
a number of economists. Both Trichet and Turner put their finger on the essential problem 
with modern economic theory: the idea that the economy would automatically self-organise 
into a satisfactory state. As unfounded as the idea was, it fit so well with the predominant 
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social and political philosophy that it has been perpetuated. Indeed, the only way to answer 
the criticisms expressed by these policy makers after 2008 is to abandon the central tenet of 
economic theory, namely that the economy will self-organise into a state which is ‘optimal’ or 
‘efficient’. The current paradigm based on ‘methodological individualism’ does not capture 
the way in which the economy functions, and pushes to onr side many of the most important 
aspects of the economic system.

Why then, was it – and is it still – so difficult to change this paradigm? The answer would 
seem to be that economists and those they advise have become so wedded to their models 
that they no longer look at what Herb Simon (*1934) described as ‘inconvenient reality’. 
Consider the following statement by Mario Draghi (*1947), the Governor of the European 
Central Bank: “And the first thing that came to mind was something that people said many 
years ago and then stopped saying it: the euro is like a bumblebee. This is a mystery of nature 
because it shouldn’t fly but it does. So the euro was a bumblebee that flew very well for 
several years. And now – and I think people ask ‘how come?’ – probably there was something 
in the atmosphere, in the air, that made the bumblebee fly. Now something must have changed 
in the air, and we know what after the financial crisis. The bumblebee would have to graduate 
to a real bee. And that’s what it’s doing”.2

To the man in the street this makes no sense. Bumblebees do fly, and if we have models 
which say that they cannot, then it is the model and not the bumblebee that has to be changed. 
We have moved away from what constitutes a true science, trying to explain observed 
phenomena to the point that, when the evidence contradicts our theory, we have doubts about 
the evidence rather than the theory.

We are told that economies in equilibrium have nice properties, particularly that nobody 
can be made better off without making somebody worse off. But how does this happen? What 
is the nature of the ‘invisible hand’ that leads the economy into a desirable state? This is the 
problem that economists have never been able to solve. The basic idea is that the markets will 
somehow modify prices until an equilibrium is reached. Our history is redolent with various 
verbal explanations as to how prices will rise in times of excess demand or fall as excess 
supply emerges and that in this way the invisible hand will do its work. Yet, with no formal 
argument to justify this, the only way out was to simply assume that the economy was in 
equilibrium and that if it was ever knocked off course it would rapidly return. Anything that 
knocked it off course was exogenous and not part of the normal functioning of the system.

What we should recognise instead is that the economy, like an eco-system, is capable of 
going through internal crises. Understanding and analysing this process is more important 
than studying economies in some sort of ‘steady state’. This vision is difficult to reconcile with 
modern economic analysis. Until the 1950s, economists and particularly macroeconomists 
had a rather pragmatic view as to how the economy functioned, but with the advent of Gérard 
Debreu (1921–2004), economics moved from a discipline using physics as its basic model 
to one using axiomatic mathematics. This led us deeper into difficulty. We put more and more 
stringent and unrealistic restrictions on the assumptions about the rationality of individuals 
and moved further away from man as a reasonable but not ultrarational individual.

2 Speech by Mario Draghi, President of the European Central Bank, at the Global Investment Conference in 
London, 26 July 2012.
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All of this should, one might think, have caused a change of mind-set with those in authority, 
but consider the statement by Alan Greenspan (*1926)3 in 2011 some three years after the 
onset of the crisis: “With notably rare exceptions (2008, for example), the global ‘invisible 
hand’ has created relatively stable exchange rates, interest rates, prices and wage rates.”

But it seemed that the economic theory ship simply sailed on, unperturbed by the upheavals 
in the economy. Yet there are many who were dissatisfied with this and explicitly asked for 
alternatives. I will now suggest the route I believe we should follow.

3. An Alternative Vision

We should treat the economy as a complex adaptive system, using computational models 
that generate large sudden endogenous changes such as those which we observe in real 
economies. Therefore, we should focus on the direct interactions between individuals, who 
are not omniscient but follow simple rules of behaviour. These interactions are central to the 
understanding of aggregate behaviour. Consider the two approaches – the standard one and 
that which thinks of the economy as a complex interactive system.

The Standard Approach

– Our models must be built on sound micro-foundations.
– As Lucas has argued, one should only make assumptions about individual characteristics.
– Individuals should satisfy economists’ axioms of rationality.
– They should optimise in isolation.
– They understand the economy they function in.
– Aggregate behaviour is like that of a rational ‘representative agent’.
– The focus is on efficient outcomes.

The Economy as a Complex Adaptive System

– Aggregate behaviour emerges from the interaction between individuals.
– Individuals follow simple rules.
– They adapt to their environment.
– They are not irrational and do not act against their own interest but are not optimisers.
– They have limited and largely local information.
– Coordination, not efficiency, is the main problem.

4. Which of These Two Approaches Should We Choose?

Taking the second position undermines the faith in the stable self-organisation of our econo-
mies, which has always been the cornerstone of our faith in economic liberalism. Focusing 
our attention on the results of the interaction between economic agents rather than on the ‘op-
timising’ behaviour of the individuals would represent a paradigm shift in economics. Instead 
of trying to explain the elaborate structure of an ant hill by the behaviour of the ‘representa-

3 Alan Greenspan is Former Chairman of the Federal Reserve Bank.



Modelling the Economy as a Complex Interactive System: Unintended Consequences

Nova Acta Leopoldina NF Nr. 419, 141–148 (2017) 145

tive ant’, we would recognise that this structure emerges from the interaction between many 
simple individuals with extremely local and limited knowledge.

We are not like ants, but we are perhaps closer to ants than to homo economicus. The 
complex system approach is nicely summarised by Robert J. Shiller (*1946), a recent 
winner of the Nobel Memorial Prize in economics, as he says: “An economy is a remarkably 
complex structure. The analogy between the brain and the computer is familiar but one can 
make the same analogy between the computer and the economy”.

The brain is, indeed, a remarkably complex structure, and I remember my father telling 
me when I was small that if the structure of our brain were simple enough for us to understand 
it, we would not be able to understand it. The lesson for us is that we are faced with a complex 
system over which we have little direct control. Just like climatologists, who even though 
their understanding of the system improves over time still cannot make precise forecasts 
beyond a very short horizon. Economists should be more modest and admit the limitations to 
our capacity to predict what the evolution of the economy will be and what the consequences 
of any policy measure will be.

5. Financial Economics

An objection that will immediately be raised is that the financial sector of the economy 
is somehow different, that we have results showing that markets are efficient, and that 
liberalising these markets leads to the best possible allocation of resources. The number of 
ex-mathematicians and physicists engaged by financial institutions suggests that there is a 
level of technical competence in this field which exceeds that in other parts of economics. 
Unfortunately, the foundations of financial economics are as weak as those of economic 
theory in general.

The basic idea of the theory is simple: Individuals receive private information and then act 
independently upon it by buying or selling assets. Their transactions modify asset prices and 
thus reveal their information to all the participants in the market. But when Louis Bachelier 
(1870 –1946) introduced this idea in his thesis in 1900, the mathematician Henri Poincaré 
(1854 –1912) immediately pointed out the essential weakness in this approach. People, he 
said, do not observe their own information independently and then act upon it. They tend to 
watch other people and follow what they do. They act like sheep. This simple observation is 
at the heart of the explanations of financial bubbles and crashes. Yet despite many objections 
from Poincaré, John Maynard Keynes (1883 –1946), Benoȋt Mandelbrot (1924 –2010), 
and others, Bachelier’s ‘random walk’ hypothesis for the evolution of stock prices has 
become the basis for modern financial analysis.

Few would argue that bubbles in the financial sector were not heavily involved, if not 
responsible, for the 2008 crisis. Bubbles are a recurring phenomenon, even if they are in 
contradiction with modern macro and financial theory. The growth in size and importance 
of the derivatives market rather than stabilising the economy has had the opposite effect. 
According to Bachelier, financial market prices convey all the necessary information to 
investors but derivatives. In fact, they diminish this transmission. If you buy a mortgage-
backed security which is, in effect, a share in many underlying mortgages, checking on the 
health of those assets becomes a difficult and expensive task. So, as the market expanded, 
rather than checking, the actors in the market bought and sold these assets and even though 
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more and more mortgages were becoming delinquent their price did not fall. However, at one 
point the information that the situation was worsening caused some market participants to 
check on the underlying assets and this revealed the toxicity of the latter. At that point, others 
started to check and the market collapsed. This was not only catastrophic for financial markets 
but had severe consequences for the real economy, recalling the warning of Warren Buffet 
(*1930), who already said this in 2002: “In my view, derivatives are financial weapons of 
mass destruction, carrying dangers that, while now latent, are potentially lethal”. But it is 
still not clear if either the warnings or our experience will lead to any significant changes in 
financial economics.

6. Income and Wealth Inequality

One of the primary concerns in our economies in recent times has been with the growing wealth 
and income inequality. Indeed, the popular success of Thomas Piketty’s (*1971) recent book 
Capital in the Twenty First Century (2014) suggests that there is a growing resentment at the 
concentration of wealth in so few hands. Initially, even Adam Smith argued that the invisible 
hand would tend to equalise incomes and wealth. Yet nothing in the theoretical literature since 
then has suggested what automatic mechanisms would achieve this. To avoid the difficulties 
with interpersonal comparisons of utility, Pareto produced the idea of a ranking which only 
ranks a state of the economy above another if in the preferred state nobody is worse off and 
somebody is better off. This, of course, has nothing to say about the distribution of wealth or 
income in the two states. Economists have come to accept Pareto’s criterion which simply 
does not involve the distribution of income or wealth. But why would people object to a 
distribution that results from the self-organising of the economy? The answer is that for most 
people there is a threshold above which inequality becomes socially unacceptable. 

This is reflected in the number of protests associated with the Occupy Wall Street 
movement in the U. S. and similar movements in European countries. The evolution of real 
wages for individuals in different parts of the income distribution has destroyed much of the 
faith in the argument that the path to wealth was one which was open to all. The idea that the 
economy self-organises to enrich not only those at the top of the income distribution but all 
those below has little support today.

7. Incentives

The last feature of the invisible hand I want to mention is that of incentives. It has long been 
argued that laissez faire, the very basis of economic liberalism, provides the right incentives 
for people to do what turns out to be in the common interest. Yet, a little reflection leads one 
to doubt this simple assertion. The classic example is the Tragedy of the Commons, in which 
each individual has an incentive to overgraze the land, but collectively this leads to disaster.

Economists observe that this is a problem of ‘externalities’. One person’s action has a 
direct and, in this case, detrimental effect on the welfare of others. This is considered to 
be the cause of a ‘market failure’, but in our increasingly interdependent world it is worth 
reflecting on the fact that such externalities are omnipresent and central to the functioning of 
the economy. They are not just inconvenient frictions.
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Furthermore, in the sort of system where people react to or anticipate the actions of others, 
taking a course of action may produce unforeseen consequences. A well-known and rather 
simple example is that which has been termed the ‘Cobra Effect’. The British administration in 
India was concerned about the number of venomous cobras in Delhi. A bounty was therefore 
offered for every dead cobra. Initially, this was a successful strategy as large numbers of 
snakes were killed for the reward. However, enterprising people began to breed cobras for 
the income. When the government found out about this, it cancelled the bounty and the cobra 
breeders set the now-worthless snakes free. As a result, the wild cobra population actually 
increased. The measure had exactly the opposite of the intended effect.

Most people remember the paradox of blood donation. As soon as a fee is paid by the 
authorities to encourage more giving of blood, the amount diminishes. People do not want to 
be seen as involved in doing something for a monetary reward. Another example is that of the 
Haifa creche or kindergarten. When fines are imposed for being late, people come even later. 
The problem changed from being an ethical or moral one to a calculation as to whether the 
new price was worth paying.

This is directly relevant to the financial sector since very large fines have been imposed 
on banks which have violated various rules. The most recent examples are the manipulation 
of the forex markets and the LIBOR declarations together with banks taking positions against 
their own clients. The banks, in some cases, openly admitted that they had simply factored 
into their calculations potential fines for wrongdoing.

We have moved far from markets which were based on trust and integrity to ones in which 
manipulation of the rules is predominant. New and more complicated regulations, though 
they may be needed now, are not enough to solve this problem.

The lesson from all of this is that individuals will adapt to whatever rules are put in place 
and new norms, whether bad or good, will emerge. History is full of examples of taxes that 
have produced perverse results. It is very difficult to predict what the effect of a policy will be 
in a system as complex as the economy, but within the standard modelling framework there is 
no place for unexpected consequences.

8. Conclusion

I have dealt at some length with the nature of, and reasons for, the failure of the Invisible hand 
to deliver the expected results which would justify laissez faire or economic liberalism. I have 
also suggested that we need to radically rethink our vision of the economy and to recognise 
that it is a complex adaptive system which we cannot fully control, and in which we can, 
at best, see patterns in the evolution of the system and react to them. This will mean being 
much more modest, but perhaps more realistic in our attempts to implement policy measures 
and not spend our time arguing that simply liberalising markets will solve all our economic 
problems. I will conclude by citing Mervyn A. King (*1948), the ex-Governor of the Bank 
of England, when discussing the work of Friedrich August von Hayek (1899 –1992): “The 
message from Hayek is that we should avoid the hubris of thinking that we understand how 
the economy works, just as we should avoid the hubris of thinking that leaving markets to 
their own devices will lead to nirvana”.4

4 Mervyn A. King, April 2013.
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The Dream of Controlling the World – 
And Why It Is Failing

 Dirk Helbing ML (Zurich, Switzerland)1

Abstract

If we just had enough data, could we optimise the world and run it like a ‘benevolent dictator’? The answer is no. 
The attempt to build a digital crystal ball to predict our future and a digital scepter to control it is destined to fail, 
no matter how powerful the information systems we build are. Even though we have moved from a time when there 
was too little data for evidence-based decisions to a time in which one can make data-driven decisions, there is still a 
gap between the complexity of the world and the data we have on it. And this gap is rapidly broadening. Though our 
computational powers are exponentially increasing, they cannot keep up with the increase in complexity! I call this 
problem the ‘complexity time bomb’. Fighting complexity is a lost battle if we do not learn how to use complexity to 
our advantage by turning from centralised to distributed control and from a top-down to a bottom-up approach that 
supports self-organisation and self-governance.

In his 2008 essay The End of Theory, WIRED author Chris Anderson2 formulated a dream: 
the truth, he argued, would reveal itself if we just had enough data. Then, the right course 
of action to improve the world would directly follow from the data. Therefore, governments 
and companies have recently collected huge piles of data. Secret services are monitoring 
every citizen in increasing detail, and a number of companies are doing this too. So, are we 
beginning to see Chris Anderson’s dream come true? Can big data yield the best possible 
decisions? Does it allow to rule the world like a ‘wise king’ or ‘benevolent dictator’?

Every day, companies such as Google and Facebook conduct millions of behavioural 
experiments on us to figure out how we can be nudged to click a certain link or buy certain 
products. Increasingly, we are becoming remotely controlled beings, and this novel approach 
to governance is becoming more and more interesting for politics, too (Thaler 2009, 
Sunstein 2016). It turns out that nudging can change our behaviour, but it has failed to make 
us healthy and slim and nice to our environment. So, today’s nudging is not as efficient as its 
inventors would like it to be. But stronger reinforcement mechanisms such as personalised 
pricing are constantly being developed.

China is even testing a citizen score, a personal number that represents your obedience; if 
you do something desirable, you will get plus points, but if you deviate from the expectations 
of those who rule, you will get minus points.3 A similar secret service programme called 
‘Karma Police’ is run in Great Britain. In conclusion, today basically everything you do is 

1 Swiss Federal Institute of Technology, Zurich, Switzerland.
2 See Anderson 2008.
3 See Stanley 2015, Big Data 2016.
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being tracked: the links you click,4 what your political opinion is and whether it supports 
that of the government, whether you pay your loan on time, or whom you interact with. All 
that data is being evaluated and can determine what kind of job you get, what interest rate 
you receive, and also what countries you are allowed to travel to – that is the plan, at least in 
China.

This is Orwell’s 1984 combined with Huxley’s Brave New World. Certainly, top-down 
systems like these can force people to do certain things. Maybe one could even make entire 
societies behave in certain ways, if people are likely to oppose the intended changes were to be 
removed using a ‘predictive policing’ approach. This is being discussed, too, and algorithms 
to determine who might do something wrong or might disturb the public order have already 
been developed. So we are pretty close to a totalitarian society in which you do not need to 
violate a law to be put to prison – the likelihood or the possibility that you might disturb the 
plan of the government might be enough. These algorithms also take into account your social 
contacts, your friends, and your neighbours. Even if your behaviour is perfectly okay, the 
behaviour of your friends or neighbours could mess up your entire life. I do not think this is 
the kind of society we would like to live in.

The technological revolution has brought our society to a crossroads, where we need to 
make up our minds and decide what our digital future should look like (Helbing 2016a, 
2015c). Data-driven versions of various historical forms of government can now be built: 
fascism 2.0 (a totalitarian ‘Big Brother’ society and ‘brave new world’), communism 2.0 (a 
state that believes it knows what is best for us and would impose it on us – the ‘Big Mother’ 
society), feudalism 2.0 (the ‘Big Other’ society [Zuboff 2015], also known as ‘surveillance 
capitalism’ run by global IT corporations). Of course, we could also build a democracy 2.0 – a 
participatory society that empowers people and fosters collective intelligence.

If we do not pay attention now, we could lose freedom and self-determination, human 
dignity, assumed innocence, fairness and justice, pluralism, democracy, participation, and 
most likely peace and many of our jobs. This is not just a theoretical threat. We have seen how 
easily democracies can be turned into other forms of government. It happened in Hungary. 
It is happening in Turkey, in Poland, and in France. Democracy has become pretty unstable, 
so it is time to speak up and defend it. Because I still believe it is the best system if we just 
upgrade it with digital means.

Privacy, human rights, and the division of power are important to sustain peace. Self-
determination promotes creativity and innovation. Pluralism and diversity are the basis of 
societal resilience (Helbing 2015a, b) (the ability to deal with shocks and other unexpected 
developments), for high innovation rates, and collective intelligence (Page 2007). I am 
convinced that co-creation, co-evolution, collective intelligence, self-organisation, and self-
governance, considering externalities (i.e. external effects of our actions), will be the success 
principles of the future.

1. Upgrading Democracy with Technology

I am not against the use of technology such as Big Data and Artificial Intelligence – on the 
contrary. However, I am arguing for a different use of technology  – a way of use that is 

4 Revealed by Beall 2016, Martin 2016, Fox-Brewster 2017.
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now called ‘values by design’ or ‘ethically aligned design’. IEEE (Institute of Electrical and 
Electronics Engineers) has recently drafted guidelines in this direction (IEEE 2016), and Elon 
Musk shares this perspective too. He has invested one billion US dollars into the OpenAI 
initiative to make artificial intelligence an instrument for everyone (Mack 2015). In the 
meantime, Amazon, Apple, Facebook, IBM, and Microsoft have decided as well to work on 
the development of moral artificial intelligence (Hern 2016). Even Pope Francis has spoken 
up. He demands a Europe 2.0, a new European humanism, and asks: “What has happened 
to you, the Europe of humanism, the champion of human rights, democracy and freedom?”

It is a wrong understanding of society to believe that the truth will emerge from big data 
and a benevolent dictator approach will produce the best results. Even though the economic 
development of Hungary is strongly data-driven, and Viktor Orbán seems to consider himself 
a benevolent dictator, Hungary has fallen back economically. It started off as the leading 
eastern European country and ended up last in the rankings. Since Turkey is governed in an 
autocratic way, its economic situation has been deteriorating too. A world-wide data-driven 
analysis by Heinrich Nax and Anke Schorr confirms that democratic forms of governance 
create economic benefits (Nax and Schorr 2015).

Now, why is today’s data-driven control not working so well? It sounds so intuitive: more 
data yields more knowledge, and more knowledge implies more power and success. However, 
optimisation creates in fact a decelerating growth curve. At some point in time the optimal 
state is reached and you cannot get beyond it. It is the wrong paradigm for society. The 
right kind of paradigm would be based on creativity, co-creation, and co-evolution, which is 
expected to produce an accelerating, exponential growth curve because it is not restricted to 
innovating within the current system (as the optimisation approach is), but it innovates the 
system too (i.e. it also comes up with totally new, ‘disruptive’ solutions which are outside 
of today’s system).5 Figure 1 shows the development of the world economy since 1991. It 
is really saturated as you would expect for an optimisation approach. This is the problem 
and we need to pursue a totally different approach now – based on an open and participatory 
information and innovation ecosystem.

It turns out that even though the information technology sector has exploded, it has not 
created the overall macro-economic growth that was expected. The current approach has also 
not solved our biggest problems yet, which are climate change, the financial, economic and 
public spending crisis, conflicts and wars, mass migration and terrorism, which may all result 
from today’s lack of sustainability. That means likely future resource shortages if we do not 
change the current economic system from a consumption-oriented system based on linear 
supply chains towards a circular and sharing economy, which would be able to provide a high 
quality of life for more people with less resources.

So, something is wrong with today’s top-down control approach, which is dominated 
by a few IT monopolies. This approach works like a data-driven version of the command 
economy – something that obviously has not worked very well in the past due to the lack 
of flexibility and creative freedoms. Interestingly, if you look at the top ten list of the most 
liveable cities in the world, for many years, none of the big IT-nations has been represented 

5 The Limit to Growth study, Global 2000, and other studies trying to anticipate our future have concluded that, 
in a world of limited resources, an economic and population collapse would occur, no matter how the simulation 
parameters are chosen. This means that the system of equations must itself be changed, meaning that we need to 
innovate and change the system.
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on it. It is therefore no surprise that a recent event on ‘disrupting cities through technology’, 
which included all relevant stakeholders, concluded that the concept of smart cities as fully 
automated, data-driven structures has failed (Wilton Park 2017a, b). Society is not a machine 
(Helbing 2017). Therefore, I advise that we use big data, but use it in a different way – not in 
the sense of a ‘black box society’ (Pasquale 2016), but in favour of an open and participatory 
information ecosystem (Helbing 2015d). The idea of a much more participatory and inclusive 
approach is now spreading in many countries, including the United States, as the ‘Open Letter 
on the Digital Economy’ shows.6

Even though we have an exponentially increasing processing power  – doubling 
approximately every 18 months according to Moore’s law7  – the overall data volume is 
increasing even faster. It is currently doubling every twelve months (Schilling 2014). This 
means that, within just one year, we produce as much data as in all the years before, in the 
entire history of humankind. As a consequence, the gap between the data we produce and 
the data one can process is opening up more and more. Therefore, there is a kind of ‘dark 
data’ that can never be evaluated, which means that we need science to decide what data to 
process and how. So science is back, in contrast to what Chris Anderson and his followers 
have claimed.

Another important point is the quickly increasing connectivity of our world. Basically, we 
are connecting companies and people more and more, creating a combinatorial explosion of 
complexity (see red factorial curve in Fig. 2). It overtakes the data volume, which means that 
top-down control will work decreasingly well as time goes on. In fact, if you have listened 
to the talks of the last World Economic Forums, the conclusion is basically this: “We have 

6 Open Letter on the Digital Economy. Available at: http://openletteronthedigitaleconomy.org (last accessed: 10. 
May 2017).

7 Moore’s law. In: Wikipedia. Available at: https://en.wikipedia.org/wiki/Moore’s_law (last accessed: 10. May 
2017).

 

Fig. 1  The volume of world trade has reached saturation in the past decade (Source: Long 2012).



The Dream of Controlling the World – And Why It Is Failing

Nova Acta Leopoldina NF Nr. 419, 149 –161 (2017) 153

lost control of the world”. Therefore, we need a new control paradigm – one that is based 
on distributed control and the subsidiarity principle (which implies significant levels of self-
organisation and self-regulation).

We really need to understand complex systems much better, and we need digital platforms 
to support a self-organised coordination in a highly complex and diverse world. Society 
cannot be steered like a car. It is not a mechanical system. It is an evolutionary system in 
which the behaviour of its parts is adapting and changing, interactions matter a lot (or even 
dominate the system behaviour), and noise is important (Helbing 2008, 2012). In complex 
systems, interactions can produce unexpected outcomes and emergent phenomena such as 
‘phantom traffic jams’ or stop-and-go waves (Helbing 1998). Even if you had a perfect mass 
surveillance system and could read the minds of all people, you could not prevent the traffic 
jam. You would just see it happen. However, we have mathematical formulas that allow us to 
understand these stop-and-go waves and how they come about.

Surprisingly, perhaps, there is no need to know much about psychology, and we do not 
need to read minds. The only thing that matters is the interactions between cars. These imply 
that, above a certain density threshold, small variations in speeds will be amplified, which 
creates a domino effect that causes a situation nobody wants (Helbing 2001). Note that the 
drivers in this experiment are all people who use modern technology and have all the data that 
seems to be necessary to accomplish the task. They are also well educated – they have driver’s 
licenses and they want to avoid traffic jams. Nevertheless, traffic jams are still happening. 
This traffic flow problem is a prime example for systems that are unstable – there are many 
of them. When confronted with such systemic instabilities, things can go totally wrong, even 
if you have the very best intentions (Helbing 2013). The occurrence of cascading effects is 

 

Fig. 2  Two exponential curves and a factorial curve, schematically illustrating the increase in computational 
processing power, overall data volume, and systemic complexity (Helbing et al. 2015b).
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a typical reason for the loss of control. Another example is the financial crisis, where a good 
performance of the individual actors could not avoid a global meltdown (British Academy 
2009). When Lehman Brothers went bankrupt, this created a cascade of bankruptcies all over 
the United States. Hundreds of banks failed, causing losses of hundreds of billions of dollars.

Let me give a further example. We recently did a decision experiment in the lab, where we 
could predict an incredible 96 % of all decisions (Maes and Helbing 2016). That is unheard-
of accuracy in social experiments. Still the deterministic model that produced these accurate 
predictions was unable to predict the aggregate, macroscopic outcome well. That means the 
overall results were quite different. The next surprise was that when we added some noise to 
the deterministic model, making the microscopic model predictions of individual behaviours 
less accurate, the macroscopic outcome was much better.

The reason why adding noise can produce more accurate macro-predictions is that small 
deviations from deterministic behaviour can trigger cascading effects that cause completely 
different kinds of outcomes. Consequently, to get a good aggregate picture, we do not need to 
know every individual behaviour. We do not need mass surveillance, as the aggregate picture 
is the only thing that a policy maker needs to care about.

With Albert Einstein, I would like to say: “We cannot solve our problems with the same 
kind of thinking that created them”. Most of the big unsolved problems of the globe are those 
related to systemic instability. This ranges from unstable supply chains to economic booms 
and recessions and breakdowns of cooperation to tragedies of the commons, from electrical 
blackouts to financial crises, and from crime to war.8 To improve the state of the world, we 
need explanatory models. In many cases, complexity science, based on non-linear interactions 
between a complex system’s components (such as individuals and companies), has delivered a 
new understanding of these problems, where the conventional ‘linear thinking’ fails to work.

In fact, it is possible to explain even counter-intuitive macro-phenomena from ‘micro-
level’ interactions, as is common in physics. Moreover, by changing the interactions, many 
problems occurring in complex systems can be solved. There are numerous nice success 
stories in complexity science for this. In the following, I will discuss some of my own work.

My research started with pedestrian and crowd dynamics (Helbing and Johansson 2010). 
In pedestrian flows, as people interact with each other, they create self-organised macro-
phenomena such as lanes of uniform walking direction where different directions of motions 
are separated from each other. This can be simulated in a computer. It takes just the higher 
relative velocity between people moving in opposite directions to produce the lane formation 
phenomenon. Traffic signs, police men, or laws are not required for this. But lane formation is 
not the only self-organisation phenomenon we found. We also discovered oscillatory flows at 
bottlenecks, stripe formation in two crossing flows, and clogging phenomena at bottlenecks, 
when fleeing crowds try to evacuate themselves (Helbing et al. 2000).

Besides pedestrian models, models for traffic flows, logistics, and supply networks, 
disaster spreading and response, social coordination and cooperation, opinion formation, the 
emergence of social norms and social preferences, as well as models for the spreading of 
crime, conflict, diseases, knowledge, and culture have been developed.9

8 For further information see: www.coss.ethz.ch/publications.html and
 https://scholar.google.de/citations?user=ebrNfPAAAAAJandhl=enandoi=ao (last accessed: 10. May 2017).
9 Brockmann and Helbing 2013, Schich et al. 2014; for further information see:
 www.coss.ethz.ch/publications.html (last accessed: 10. May 2017).
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Some of this work has also been applied in practical contexts. The following provides an 
incomplete list:

– A pedestrian software for crowd and evacuation simulations was developed based 
on the social force model of pedestrian motion discussed below. The software is now 
commercially available and internationally distributed. It has, in the meantime, supported 
the planning of the Formula One Grand Prix in Abu Dhabi, the North Melbourne Station, 
and various arenas and mass events all over the world.

– Based on an application of the ‘slower-is-faster effect’ observed in pedestrian crowds, 
certain steps in the semiconductor production of Infineon Technologies could be improved, 
which has increased the throughput by 30 % (Helbing et al. 2006).

– The observation of self-organised oscillations of pedestrian flows at bottlenecks inspired 
a new traffic light control approach based on concepts of emergent coordination and self-
control, which is patented (Lämmer and Helbing 2008, Helbing and Lämmer 2012). The 
practical performance of this approach has been successfully tested in the city of Dresden.

2. The Social Force Model

In the following, I will discuss just one kind of model which has helped to understand and 
solve complex real-world problems (Helbing et al. 2015a): the social force model. Different 
kinds of models – from agent-based, to cellular automata, to gas-kinetic, fluid-dynamic, and 
stochastic – have been developed for various other kinds of problems.10 The social force model 
can explain all the above-mentioned observations (lane formation, oscillations at bottlenecks, 
stripe formation, and the clogging phenomenon of escaping crowds at bottlenecks). The 
model has been inspired by physics but adapted to social behaviour. It is based on an equation 
of motion and an acceleration equation. The latter contains several different force terms that 
represent different motivations of a pedestrian, for example to adjust their speed, to walk into 
a certain desired direction of motion, or to keep some distance to other people, as reflected 
by repulsive forces.

The social force model not only reproduces the observed self-organisation phenomena 
in a qualitative way. It also passes empirical and experimental tests. For example, we have 
compared the model with empirical pedestrian trajectories (Johansson et al. 2007) and 
performed a series of lab experiments (Moussaid et al. 2011, 2009). The obtained knowledge 
was also applied to study practical problems such as crowd disasters. In the past, for example, 
several crowd disasters have occurred during the Hajj, the Muslim pilgrimage. For this reason, 
the Saudi Arabian government asked me and other experts for an analysis of the problem 
(Haase et al. 2016). During the Hajj, an estimated 1.5 to 3 million people walk from the Holy 
Mosque in Mecca to Mina, where they perform the ‘stoning the devil’ ritual. On the Jamarat 
Bridge in Mina, the temptation by the devil is represented by several pillars. The pilgrims 
are supposed to demonstrate their resistance to these temptations by throwing little stones 
(‘pebbles’) against the pillars. This has caused extremely crowded situations on the Jamarat 
Bridge in the past, such that crowd disasters happened on average every two to three years. 
In 2006, a crowd disaster occurred on the open plaza in front of the entrance to the Jamarat 

10 For further information see: www.coss.ethz.ch (last accessed: 10. May 2017).
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Bridge which happened to be recorded. Our video analysis revealed that there was first a 
transition from smooth pilgrim flows to stop-and-go-flows, which may be seen as an advance 
warning signal of potential trouble to come (Johansson et al. 2008).

After this, there occurred a second unexpected transition to crowd turbulence, when the 
density was so high that pilgrims were erratically pushed around by others in the crowd, probably 
without intent. There is a transfer of forces from one body to the next, and the forces add up 
with unpredictable sizes and directions such that the situation becomes uncontrollable, even by 
many soldiers. Later, we found out that the same mechanism was also the cause of the Love 
Parade disaster (Helbing and Mukerji 2012). Movies taken by participants of the event showed 
turbulent waves, as we had expected. These made people stumble and fall on top of each other.

As the occurrence of such deadly crowd disasters is not acceptable, the Saudi Arabian 
government has built a new Jamarat Bridge in the past years.11 A five-level-structure with more 
capacity replaced the old Jamarat Bridge and different ramps leading to the different levels 
made sure to separate different pilgrim flows. They also put together a team of international 
experts to help come up with suggestions. A Saudi Arabian expert team responsible for the 
implementation selected several of them for realisation. One of the suggestions made was to 
avoid crossing and counter-flows, meaning to implement a unidirectional flow organisation. 
This has worked safely for many years. The government was very happy with the results 
and the work received high international recognition. In the following years, I was no longer 
involved in expert workshops or otherwise. Then, in 2015, a crowd disaster happened, most 
likely due to the occurrence of crossing flows (Haase 2017).

3. Optimisation Itself Does Not Necessarily Prevent Turbulent Flow in Crowds

In that year, another team was apparently trying to maximise flow and comfort by minimising 
travel times. This may have led to stronger variations in the density and flow than in previous 
years and to crossing flows. Despite the optimisation and at least five thousand CCTV 
cameras, the crowd disaster could not be prevented. So optimisation and surveillance are no 
guarantee for functionality and safety, as I said before.

One of the neglected problems of optimisation is the right choice of the goal function. In 
the above case, it seems that travel times were chosen rather than safety (which was optimised 
in previous years). In the case of our economy, gross domestic product was maximised rather 
than sustainability. Unfortunately, in many cases one only finds out too late that another goal 
function should have been chosen.

What is possible, however, is to model the complexity of pedestrian flows with reasonably 
simple models and to explain what is going on, under what conditions, and why. By now, we 
can also understand many other troubling self-organisation phenomena. For example, we can 
predict various kinds of traffic congestion and the travel times associated with them (Helbing 
et al. 2009). However, we cannot predict the moment when congestion sets in, because this 
may depend on a random event, such as the overtaking manoeuvre of a truck. Despite this 
complication, we have been able to develop an analytical theory of vehicle flows that can help 
to overcome traffic congestion.

11 For further information see: http://web.archive.org/web/20140816222258/ and
 www.trafficforum.org/crowdturbulence (last accessed: 10. May 2017).
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The right approach for this is ‘mechanism design’, or in this case an adaptive cruise control 
(ACC) system that is changing the interactions between successive cars (Kesting et al. 
2008). In such a way, it is possible to get rid of congestion, even if not every car is equipped 
with an ACC system. As stop-and-go waves show, self-organisation in complex systems does 
not necessarily produce desirable outcomes, but we can generate favourable outcomes by 
changing the interactions. This approach can also be applied to urban traffic. In our self-
organised traffic light control, traffic flows control the traffic lights in a bottom-up way rather 
than the other way around, as it is common today. This approach makes traffic flow much 
more efficiently than the state-of-the-art control systems, attempting to optimise the flow by 
a traffic control centre.12

We propose to apply a similar approach to social and economic systems. Mechanism 
design (Maskin 2008) can improve the outcome of social and economic interactions, for 
example in markets (whose performance depends on the respectively applied auctioning 
mechanism) (Ferscha et al. 2012). What we need for this is knowledge from game theory, 
complexity science, or computational social science. In fact, Noble Prize winner Elinor 
Ostrom has proven with empirical observations that self-governance can be efficient if the 
institutional design is well-chosen (Ostrom 2015). Therefore, I propose to use personal 
digital assistants to help us take better decisions (Helbing 2015e). Information systems that 
support our creativity, innovation, and coordination will also benefit the economy and society 
altogether. They will improve business models, products and services, cities, and the world. 
Reputation systems, for example, can influence social interactions in a way that promotes 
responsible behaviour, cooperation and quality (Diekmann et al. 2014).

Such digital assistants working for us can now be built. We just need to create a suitable 
institutional framework. ‘Digital democracy’ is such a framework that allows the knowledge 
and ideas of many minds to come together and create ‘collective intelligence’ (Helbing und 
Pournaras 2015). Massive open online deliberation platforms (MOODs) can support this 
(Helbing and Klauser 2016).

It turns out that diversity is highly important to come up with good solutions that work 
for many people (Page 2007, Woolley et al. 2010, Hidalgo et al. 2007). So it is very 
important to promote value pluralism and to reach a balance of interests (‘social forces’), in 
order to produce solutions that do not just improve a system for a single group. To enable 
combinatorial innovation and a flourishing, thriving economy, solutions should benefit many 
groups of companies and people.

In order to support this, my team and I have recently started to work on a digital platform 
called Nervousnet.13 It aims to measure the externalities between people and companies and 
the environment. We can use smartphones and the Internet of Things to do these measurements 
collectively in a crowd-sourced way. We could then give undesired effects such as noise, 
pollution, or rubbish a price and desirable things such as cooperation, education, or the reuse 
of resources a value. With such a system, people could actually earn money for producing 
data and sharing them with others, as well as for producing positive externalities. This could 
be the basis of the participatory digital economy that I imagine for the future.

12 For further information see: www.stefanlaemmer.de and www.stefanlaemmer.de/#Literatur (last accessed: 10. 
May 2017)

13 For further information see: www.nervousnet.info (last accessed: 10. May 2017).
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The approach would create multidimensional incentive systems or, if you want, multi-dimen-
sional financial markets, which would help to manage complex systems in a differentiated, 
multi-factorial way and even to build self-organising or self-regulating systems (Helbing 
2016b). Such a multi-dimensional financial system can now be created using blockchain tech-
nology. In other words, 300 years after the inception of the concept of the ‘invisible hand’ 
presented in the previous talk by Alan Kirman, we can finally make it work by combining the 
Internet of Things with blockchain technology and complexity science.

Such a system could establish new kinds of incentives which would boost a circular and 
sharing economy. Thereby, we could mitigate or even overcome the resource crises expected 
for the future. Rather than implementing a circular and sharing economy by regulations 
and laws, this approach would create new market forces promoting a more responsible and 
efficient use of resources and recycling (Helbing 2014, 2016c). In a similar way, one could 
produce incentives supporting social coordination, cooperation, and peace.

In summary, my vision of the digital economy and society of the future is that of a 
networked, well-coordinated, distributed system of largely autonomous (sub-)systems. I do 
believe we should use Big Data, but it should be used in an open, participatory, fair and 
democratic way. We should also use Artificial Intelligence, but in a symbiotic and ethical 
way. We should further use incentive systems, but in a multidimensional way. It is also fine 
to create an operating system for society, but it should provide everyone opportunities for 
creativity and innovation, for bottom-up participation and co-creation. We need a new societal 
framework, a finance system 4.0 and socio-ecological capitalism to solve the problems of the 
future. According to my vision, this digitally upgraded capitalism would also be democratic, 
so smart technologies alone will not create smart cities and smart nations. It is the combination 
of smart technologies and smart citizens which creates smarter societies. Let us now build 
this together!
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Lengauer: That sounds like a nice conclusion, but we still want to allow for questions. 
Maybe I can start with the first question. There is quite an apparent inconsistency between 
the two of you, if I may polarise a little. Alan, you claim that there is no invisible hand. 
Dirk, you claim that there is one if we look for it. So, can I just confront you with each 
other?

Kirman: I think it is not really an inconsistency. The invisible hand as envisaged by economists 
has basically been a market system which somehow gathers the information and then 
sends it back to everybody. And what Dirk has in mind is quite a different sort of invisible 
hand, I think, with which this information is going back and forth. One thing that worries 
me about Dirk’s vision of things is that he wants the invisible hand to reach down from the 
government to tell people how to act. But there is a lot of work going on to suggest that, in 
fact, governments themselves do a lot of innovation. And that bothers people because it is 
in contrast to what, I think, Dirk has in mind and the general idea of laissez faire.

Helbing: First of all, I want to clarify that a government telling people how to act is not 
what I wanted to suggest. Coming back to the question, I also do not think we have 
inconsistent positions. We have just looked at the problem from different perspectives. 
My point of view is that, without doing anything, the invisible hand sometimes works, 
but often fails because self-organisation may have desirable or undesirable outcomes. 
Traffic congestion, financial crises, and crowd disasters may happen if the right kinds of 
interaction mechanisms and institutions are not put in place. The important point is that 
digital technologies, namely the combination of the Internet of Things with blockchain 
technology, can now put the right interactions in place to get the desired outcomes. It is the 
challenge of complexity science to identify those institutions and interaction mechanisms 
that create desirable outcomes. I have nothing to say against governments as coordinating 
and enabling institutions.

  I think, basically, there will be a combination of top-down and bottom-up forms of 
organisation in the future, pretty much as the subsidiarity principle demands. If you have 
problems that are not computationally difficult and for which you don’t need to innovate, 
then optimisation is fine, of course. You can solve these problems in a top-down way. 
There are many other problems, however, where creativity and innovation are needed or 
the optimisation problem is so computationally difficult that it cannot be solved in real 
time. Innovation happens mostly on the bottom. So, it is really important that we have 
this combination of top-down and bottom-up. What we now need to do is to strengthen 
the bottom-up part with the new digital technologies that are now becoming available 
(the Internet of Things, blockchain technologies, DAOs etc.). I am not arguing against 
the use of digital technologies, I am just saying we should use them in a smarter way that 
produces desirable outcomes while being compatible with our fundamental values.
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Guest: As economists, we usually try to learn from the hard sciences. Is there something that 
the hard sciences can learn from economists? And, to Professor Helbing, I also really 
like the idea of distributed control, but the problem is: whose control? Consider digitalised 
platforms. Should we have public control of platforms that then allow people to have the 
crowd sourcing of ideas, collaboration, interaction, and so on and so forth?

Kirman: My objection to the standard approach in economics is that we have learned from 
classical mechanics that we could understand high-level behaviour by making general 
assumptions about how the individuals in a system behave in isolation. When we observe 
them, they do not seem to behave according to our assumptions. But sometimes, when we 
put them all together, the whole system does seem to behave as if the assumptions were 
true. With all due respect to Ian, that is what I think. If you want to understand how the 
structure of an ant colony develops, you would not look at a ‘representative’ ant. That 
is my only point, that we should stop making strong assumptions about individuals. We 
should worry much more about collective behaviour. From this point of view, we have 
little to teach the ‘hard sciences’.

Helbing: I think it is important to take heterogeneity into account. People are different, 
and it’s also important to consider that many people have social preferences. This is not 
built into the conventional paradigm of the ‘homo economicus’. I think considering this 
allows you to understand a lot more things. And if you go away from the representative 
agent approach, then you can understand many of the emergent phenomena that happen 
only if there are sufficiently many people or companies interacting with each other. These 
‘meso-level’ phenomena may not happen if an infinite number of people or companies are 
interacting. I predict a similar development in economics as that which we experienced 
in physics, when we went from mechanics to quantum mechanics or to the theory of 
relativity. So, there will be a paradigm shift, I think, and it is already on its way.

 Regarding the question to me: yes, these platforms should be publicly managed. The 
World Wide Web, Wikipedia, and OpenStreetMap may serve as examples of how such 
management could look like. However, I expect that the governance concept will further 
develop in a way that supports collective intelligence.
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Closing Remarks

 Thomas Lengauer ML (Saarbrücken)1

Many presentations in this symposium have made the salient point that nature is complex 
and that modelling nature poses a great challenge. At the same time, our workshop has 
demonstrated that we are becoming increasingly ambitious with our models. Three levels of 
understanding were outlined by our speakers.

The least ambitious level is to understand why something has happened in the past. For 
instance, today, based on many historical analyses, a picture of the causative origins of the 
First World War is emerging. However, no one could have predicted that war at the time. 
Prediction without explanation is second most ambitious level. Here, data analysis plays the 
leading role. But the ultimate ambition of a scientist is to understand the world and find 
causal explanations in unified theories. The issues on this highest level of ambition have not 
been eased significantly by the availability of data or novel data analysis methods. Reaching 
understanding seems to be as difficult as ever.

But the symposium has also shown us that control does not always require understanding. 
By predicting their behaviour accurately, we can already influence systems positively without 
really understanding how they work. Still, for many systems, accurate prediction remains a 
great challenge. In the end, we all need to be modest. We tend to overestimate our abilities and 
to underestimate the complexity of natural systems. All of us are working hard to increase the 
little control we have over the diverse complex dynamics of our world, to alleviate suffering, 
and to understand our universe.

So, can we control the world? I believe we can answer that question with a resounding: 
Not yet!

1 Max Planck Institute for Informatics, Saarbrücken.
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