

Curriculum Vitae Prof. Dr. Peter Hegemann

Name: Peter Hegemann Geboren: 11. Dezember 1954

Foto: Bernd Prusowski | HU Berlin

Forschungsschwerpunkte: Kanalrhodopsine, Optogenetik, neuronale Netzwerke, Photobiologie der Grünalge (Chlamydomonas reinhardtii), Photorezeptoren

Peter Hegemann ist Biophysiker. Schwerpunkt seiner Arbeit ist die Algenforschung. Er analysiert sensorische Photorezeptoren aus Mikroalgen und gilt als einer der Entdecker der Kanalrhodopsine. Diese lichtempfindlichen Proteine sind die Grundlage für das Wissenschaftsgebiet der Optogenetik, das Peter Hegemann mitbegründet hat. Die Optogenetik ermöglicht neuartige Untersuchungen von neuronalen Netzwerken.

Akademischer und beruflicher Werdegang

seit 2015	Hertie-Senior-Forschungsprofessur Neurowissenschaften, Hertie-Stiftung, Frankfurt am Main
seit 2012	Gastwissenschaftler, Howard Hughes Medical Institute, Ashburn, USA
seit 2005	Professor für experimentelle Biophysik, Humboldt-Universität zu Berlin
1993 - 2004	Professor für Biochemie, Universität Regensburg
1992	Habilitation, Ludwig-Maximilians-Universität München (LMU) München
1986 - 1992	Leiter, Forschungsgruppe, Max-Planck-Institut für Biochemie, Martinsried
1985 - 1986	Forschungsaufenthalt, Physics Department, Syracuse University, Syracuse, USA
1984	Promotion, Max-Planck-Institut für Biochemie, Martinsried
1980	Diplom in Biochemie
1975 - 1980	Studium der Chemie, Westfälische Wilhelms-Universität Münster sowie LMU München

Funktionen in wissenschaftlichen Gesellschaften und Gremien

2009 - 2012	Mitglied, Senatsausschuss für Sonderforschungsbereiche, Deutsche
	Forschungsgemeinschaft (DFG)
2008 - 2010	Mitglied, Verwaltungsrat, Excellenzcluster 314 (EXC) "UniCat – Unifying Concepts in
	Catalysis", DFG

Projektkoordination, Mitgliedschaft in Verbundprojekten

seit 2019	Antragsteller, Projekt "Funktionelle in vivo Untersuchung sensorischer Photorezeptoren der Alge Chlamydomonas", DFG
seit 2019	Antragsteller, Projekt "Analyse funktioneller Hirnverbindungen mittels in vivo Optogenetik und Holographie", DFG
seit 2019	Antragsteller, Teilprojekt "Entwicklung und Modifizierung von Chrimson für subzelluläre optogenetische Anwendungen", Schwerpunktprogramm (SPP) 1926, DFG
seit 2019	Antragsteller, Teilprojekt "Shrimp Rhodopsine, neue dunkelrot absorbierende optogenetische Werkzeuge", SPP 1926, DFG
seit 2018	Leiter, Teilprojekt "Entwicklung von molekularen Werkzeugen zur Manipulation und Untersuchung von Gedächtnis-Engrammen", Sonderforschungsbereich (SFB) 1315, DFG
2016 - 2023	Antragsteller, Teilprojekt "Entwicklung und Anwendung von RoCK, einem neuen Rhodopsinzyklase/K+ - Kanal-basierten optogenetischen Werkzeug zur Inhibierung erregbarer Zellen", SPP 1926, DFG
2016 - 2022	Antragsteller, Teilprojekt "Entwicklung und Anwendung neuer optogenetischer Werkzeuge in spezifischen intrazellulären Kompartimenten", SPP 1926, DFG
2016 - 2021	Advanced Grant "Mechanism of Enzyme Rhodopsin Activation (MERA)", European Research Council (ERC)
2016 - 2020	Advanced Grant "Active dendrites and cortical associations (ActiveCortex)", ERC
seit 2015	Leiter, Projekt "FTIR Spektrometer mit Laseranregungssystem", DFG
seit 2013	Leiter, Teilprojekt "Schaltprozesse und Transportdynamik von Kanalrhodopsinen", SFB 1078, DFG
seit 2013	Leiter, Teilprojekt "Protonenaustauschprozesse in Phytochromen und Retinalproteinen untersucht mittels MAS-NMR", SFB 1078, DFG
seit 2013	Leiter, Teilprojekt "Gating und Ionentransportdynamik in Kanalrhodopsinen und in lichtgetriebenen Ionenpumpen", SFB 1078, DFG

2013 - 2017	Antragsteller, Teilprojekt "Characterization of biomodal light-switchable rhodopsins and tailoring for optogentic_application", FOR 1279, DFG
2011 - 2016	Antragsteller, Projekt "Investigation of BLUF photochemistry by isotopic labeling of flavin cofactor and amino acid side chains", DFG
2011 - 2016	Antragsteller, Projekt "Untersuchung von ultraschnellen Prozessen in Biomolekülen mit Schwingungsspektroskopie an selektive Isotopen markierten Proteinen", DFG
2009 - 2014	Antragsteller, Central Project, FOR 1261, DFG
2010 - 2017	Antragsteller, Teilprojekt "Channelrhodopsin colour tuning", FOR 1279, DFG
seit 2010	Sprecher, Forschungsgruppe (FOR) 1279 "Protein-based Photoswitches", DFG
2009 - 2014	Antragsteller, Projekt "Der Photochromismus des Channelrhodopsin-1 aus Volvox carteri (VCHR)", DFG
2009 - 2017	Antragsteller, Teilprojekt "Functional characterization of novel rhodopsins of Chlamydomonas and other algae", FOR 1261, DFG
2004 - 2010	Sprecher, FOR 526 "Blaulicht-sensitive Photorezeptoren", DFG
2000 - 2003	Sprecher, Graduiertenschule (GSC) 640 "Sensory photoreceptors in natural and artificial systems", DFG
2007 - 2018	Beteiligter Wissenschaftler, Exzellenzcluster (EXC) 314 "Unifying Concepts in Catalysis", DFG
2005 - 2010	Antragsteller, Teilprojekt "Molekulare Mechanismen der Genstilllegung und Positionseffekte in Grünalgen", FOR 504, DFG
2005 - 2009	Antragsteller, Teilprojekt "Nuclear gene targeting in Chlamydomonas reinhardtii", FOR 504, DFG
2005 - 2009	Leiter, Teilprojekt "Expression and spectroscopic characterization of channelrhodopsins and enzymerhodopsins from Chlamydomonas reinhardtii", SFB 498, DFG
2004 - 2011	Beteiligter Wissenschaftler, Teilprojekt "Biochemical and spectroscopic characterization of blue light receptors with LOV and BLUF-domain-type chromophores from microalgae and purple bacteria", FOR 526, DFG
2003 - 2013	Antragsteller, Projekt "The Channelrhodopsin mechanism", DFG
1997 - 1998	Leiter, Teilprojekt "Rhodopsinregulierte ionale Signalprozesse in Chlamydomonas und Volvox", SFB 521, DFG
1996 - 2004	Leiter, Teilprojekt "Sensorische Rhodopsine einzelliger Algen", SFB 521, DFG

Auszeichnungen und verliehene Mitgliedschaften

seit 2022	Mitglied, National Academy of Sciences, USA
seit 2022	Mitglied, American Academy of Arts and Sciences, USA
2022	Louisa Gross Horwitz Prize, Columbia University, New York City, USA
2021	Lasker Basic Medical Research Award, Lasker Foundation, New York City, USA
2020	Shaw Prize, Shaw Prize Foundation, Hongkong, China
2019	Warren Alpert Foundation Prize, Warren Alpert Foundation, Providence, USA
2018	Rumford Prize, American Academy of Arts and Sciences, USA
2018	Canada Gairdner International Award, The Gairdner Foundation, Toronto, Kanada
2018	Otto-Warburg-Medaille, Gesellschaft für Biochemie und Molekularbiologie (GBM), Frankfurt am Main
2017	Mendel-Medaille, Nationale Akademie der Wissenschaften Leopoldina
2017	Harvey Prize, Technion – Israel Institute of Technology, Haifa, Israel
2016	Massry Prize, Meira and Shaul G. Massry Foundation, Beverly Hills, USA
2016	Hector Wissenschaftspreis sowie Hector Fellow, Hector Stiftung II, Karlsruhe
2015	Berliner Wissenschaftspreis, Regierender Bürgermeister von Berlin
seit 2014	Mitglied, European Molecular Biology Organisation (EMBO)
seit 2014	Mitglied, Berlin-Brandenburgische Akademie der Wissenschaften
2013	Brain Prize, Lundbeck Foundation, Kopenhagen, Dänemark
2013	Louis-Jeantet Prize for Medicine, Louis-Jeantet Foundation, Genf, Schweiz
2013	Gottfried Wilhelm Leibniz-Preis, DFG
seit 2012	Mitglied, Nationale Akademie der Wissenschaften Leopoldina
2012	Zülch-Preis für neurologische Grundlagenforschung, Max-Planck-Gesellschaft zur Förderung der Wissenschaften, München
2010	Karl Heinz Beckurts-Preis, Karl Heinz Beckurts-Stiftung, Berlin
2010	Wiley Prize in Biomedical Sciences, Wiley Foundation, Hoboken, USA
1986	Karl Winnacker-Stipendium, Aventis Foundation, Frankfurt am Main
1984	Otto Hahn-Medaille, Max-Planck-Gesellschaft zur Förderung der Wissenschaften, München

Forschungsschwerpunkte

Peter Hegemann ist Biophysiker. Schwerpunkt seiner Arbeit ist die Algenforschung. Er analysiert sensorische Photorezeptoren aus Mikroalgen und gilt als einer der Entdecker der Kanalrhodopsine. Diese lichtempfindlichen Proteine sind die Grundlage für das Wissenschaftsgebiet der Optogenetik, das Peter Hegemann mitbegründet hat. Die Optogenetik ermöglicht neuartige Untersuchungen von neuronalen Netzwerken.

Kanalrhodopsine sind Proteine aus einzelligen Mikroalgen (Chlamydomonas reinhardtii), die in der Zellmembran lichtempfindliche Ionenkanäle bauen. Diese Kanäle werden unter Einfall von blauem Licht vorübergehend durchlässig für Protonen und Kationen (Na⁺, K⁺ und Ca²⁺). Mit seiner Arbeitsgruppe hat Peter Hegemann die Funktion der Kanalrhodopsine charakterisiert und verschiedene Subtypen analysiert.

In Zusammenarbeit mit dem Würzburger Biophysiker Georg Nagel konnte er das Konzept der lichtaktivierten Ionenkanäle beweisen. Auf diesen Erkenntnissen baut das Wissenschaftsgebiet der Optogenetik auf, eine Mischung aus optischer Technologie und Genetik. Werden Kanalrhodopsin-2-Proteine in die Zellmembran eingebracht, ist die Zelle durch Licht gezielt steuerbar. Die eingeschleusten Proteine reagieren wie Lichtschalter. Wissenschaftler verfügten damit erstmals über die Möglichkeit, Nervenzellen von außen gezielt an- und auszuschalten. Hegemann konnte nachweisen, dass dieses Prinzip bei ganz unterschiedlichen Zelltypen funktioniert.

In weiteren Arbeiten konnte Peter Hegemann zusammen mit Kolleginnen und Kollegen komplexe neuronale Netzwerke durch Licht anregen. Hegemann führte bei Mäusen gezielte Verhaltensänderungen durch Licht herbei. Im Gehirn von Mäusen gelang es, Neuronen an- und abzuschalten, die Dopamin benutzen. Dadurch wurden Symptome von Parkinson gelindert.

Seine Forschungsgruppe hat auch den Selektivitätsfilter der Kanalrhodopsine identifiziert und diesen so modifiziert, dass negativ geladene Chloridionen durch die Ionenkanäle geleitet werden. Dadurch haben die Wissenschaftler ein neues optogenetisches Werkzeug (Neurooptical Technologies) entwickelt, mit dem die Verschaltung neuronaler Netzwerke analysiert werden kann. Die Technik eignet sich zur Untersuchung von Krankheiten wie Epilepsie, Parkinson und Altersblindheit. In weiteren Schritten könnten daraus neue, zielgerichtet Konzepte für Therapien entstehen, zum Beispiel auch optische Herzschrittmacher.

Zudem beschäftigt sich die Arbeitsgruppe von Peter Hegemann mit Flavin-basierten
Blaulichtrezeptoren wie Phototropin. Dieser Rezeptor kontrolliert die Krümmungs-Bewegungen von
Sprossen und Blättern. Das Team konnte auch die gezielte Genmodifizierung in der Grünalge
Chlamydomonas (Gene Targeting) zum Erfolg führen und damit der Algenforschung ein wichtiges
neues Werkzeug an die Hand geben. Darüber hinaus setzt sich Peter Hegemann für den Dialog
zwischen Wissenschaft und Öffentlichkeit ein.