

Curriculum Vitae Prof. Dr. Regine Hengge

Name: Regine Hengge Geboren: 2. November 1956

Forschungsschwerpunkte: Überlebensmechanismen von Bakterien, Stressverarbeitung, Biofilmbildung, Botenstoff Cyclic-di-GMP, Entwicklung von Antibiofilmwirkstoffen

Regine Hengge ist Mikrobiologin. Sie erforscht, wie Bakterien Biofilme bilden und wie sie Stress verarbeiten. Als eine der Ersten hat sie die molekularen Regulationsvorgänge in nicht mehr wachsenden Bakterien untersucht. Zudem hat sie ein Modellsystem der Stressantwort beim Bakterium "Escherichia coli" erstellt.

Akademischer und beruflicher Werdegang

seit 2013	Professorin (W3) für Mikrobiologie, Humboldt-Universität zu Berlin
2002	Ruf auf den Lehrstuhl für Mikrobiologie, Ludwig-Maximilians-Universität (LMU) München (abgelehnt)
1998 - 2013	Professorin (C4) für Mikrobiologie, Freie Universität Berlin
1994 - 1998	Privatdozentin (C2) für Mikrobiologie, Universität Konstanz
1994	Habilitation in Mikrobiologie/Genetik an der Universität Konstanz
1989 - 1994	Assistentin (C1), Mikrobiologie, Universität Konstanz
1987 - 1988	Postdoc Mikrobiologie/Genetik, Princeton University, USA
1986	Promotion in Biologie an der Universität Konstanz
1982 - 1986	Wissenschaftliche Arbeiten an der Universität Konstanz
1976 - 1981	Studium der Biologie, Universität Konstanz

Funktionen in wissenschaftlichen Gesellschaften und Gremien

seit 2005	Mitglied im Editorial Board, EMBO Journal und EMBO Reports
2000 - 2003	Mitglied des DFG Evaluationskomitees Molekularbiologie
1998 - 2000	Mitglied des Innovationsbeirats des Landtags von Baden-Württemberg
1995 - 2000	Mitglied des Editorial Board, J. Bacteriology

Gutachterin für nationale und internationale Forschungseinrichtungen und Stiftungen wie DFG, NSF, Wellcome Trust, Schweizer Nationalfonds, Israel Science Foundation

Projektkoordination, Mitgliedschaft in Verbundprojekten

seit 2016	Sprecherin DFG-Schwerpunktprogramm SPP 1879 "Nucleotide Second Messenger Signaling in Bacteria" $$
seit 2016	DFG-Projekt "Sensorische Mechanismen der c-di-GMP-Signaltransduktion bei der Biofilmbildung von E. coli", Teilprojekt zu SPP 1879
seit 2015	DFG-Projekt "Heterogenität der Matrix-Produktion bei der bakteriellen Biofilmbildung", Teilprojekt zu SPP 1617 "Phänotypische Heterogenität und Soziobiologie bakterieller Populationen"
seit 2014	DFG-Projekt "Schlüsselmechanismen der molekularen Signaltransduktion durch den sekundären Botenstoff c-di-GMP bei der bakteriellen Biofilmbildung"
2006 - 2014	DFG-Projekt "Bacterial "life-style" choices: Coordination of motility and biofilms functions by GGDEF/EAL proteins in Escherichia coli"
2004 - 2007	DFG-Projekt "Struktur/Funktions-Beziehungen der sigma S-haltigen "Stress"-RNA- Polymerase in Escherichia coli"
2002 - 2009	DFG-Projekt "Global regulation by proteolysis in Escherichia coli: Molecular recognition, signal integration and quantitative analysis of proteolysis-controlled regulatory circuits", Teilprojekt zu SPP 1132 "Proteolyse in Prokaryonten: Proteinqualitätskontrolle und regulatorisches Prinzip"
2002 - 2008	Sprecherin DFG-Schwerpunktprogramm SPP 1132
2002 - 2007	DFG-Projekt "Das Transkriptionsnetzwerk der sigma S-vermittelten generellen Stressantwort in Escherichia coli: Promotorstrukturen, Netzwerkarchitektur und Verbindungen zu anderen globalen Netzwerken"

Auszeichnungen und verliehene Mitgliedschaften

seit 2012	Mitglied der American Academy of Microbiology
2009	Gründungsmitglied der European Academy of Microbiology

2009	ERC Advanced Researcher Grant
seit 2004	Mitglied der European Molecular Biology Organisation (EMBO)
seit 2001	Mitglied der Nationalen Akademie der Wissenschaften Leopoldina
seit 2000	Mitglied der Berlin-Brandenburgischen Akademie der Wissenschaften
1998	Gottfried Wilhelm Leibniz-Preis der Deutschen Forschungsgemeinschaft (DFG)
1996	Landesforschungspreis des Landes Baden-Württemberg
1995	Dozenten-Stipendium des Fonds der Chemischen Industrie
1993	Förderpreis der Deutschen Gesellschaft für Hygiene und Mikrobiologie (DGHM)
1987 - 1988	Forschungsstipendium der DFG
1985 - 1987	Postgraduate fellowship des Boehringer Ingelheim Fonds
1984 - 1985	Promotionsstipendium der Studienstiftung des deutschen Volkes
1976 - 1981	Stipendium der Studienstiftung des deutschen Volkes

Forschungsschwerpunkte

Regine Hengge erforscht, wie Bakterien Biofilme bilden und wie sie Stress verarbeiten. Als eine der Ersten hat sie die molekularen Regulationsvorgänge in nicht mehr wachsenden Bakterien untersucht. Zudem hat sie ein Modellsystem der Stressantwort beim Bakterium "Escherichia coli" erstellt.

Bakterien können in extrem feindlichen Umgebungen überleben, weil sie komplexe Stressantworten entwickelt haben. Regine Hengge erforscht diese grundlegenden Überlebensmechanismen der Bakterien. Dabei dient ihr das Bakterium "Escherichia coli" als Modell. Sie untersuchte Stressreaktionen bei Bakterien, die unter Nährstoffmangel leiden. Im Fokus standen dabei Mechanismen der Signalübertragung und die Genregulation.

Ein weiterer Forschungsschwerpunkt sind bakterielle Biofilme. Biofilme haben gewebeähnliche Eigenschaften und bieten Bakterien Schutz. Sie spielen eine wichtige Rolle bei chronischen Infektionskrankheiten, denn in Biofilmen sind Bakterien resistent gegen Attacken des Immunsystems, gegen Desinfektionsmittel und Antibiotika. Regine Hengge erforscht hier vor allem die Funktion eines Botenstoffs, der die Bildung von Biofilmen anregt (Cyclic-di-GMP). Sie möchte aufklären, wie die beteiligten Proteine und deren Cyclic-di-GMP-bindende Effektorkomponenten während der Biofilmentstehung kooperieren und wie sie reguliert werden.

Außerdem untersucht sie die komplexe Architektur von Biofilmen sowie die Hemmung von Biofilmen durch Naturstoffe. Da der Botenstoff zur Biofilmbildung in fast allen Bakterien vorkommt, können die Mechanismen und zellulären Prozesse Angriffspunkte für Medikamente sein. Auf der Grundlage ihrer Forschung könnten neue Antibiofilmwirkstoffe entwickelt werden.