Sprachwechsler

Diese Seite wurde bisher noch nicht übersetzt

Infrastrukturumbau und CO₂-Bepreisung

Seite teilen

Um einer klimaneutralen Energieversorgung näher zu kommen, sind drei Handlungsfelder zentral: eine gemeinsame Strategie für den Infrastrukturumbau, Netzausbau und Monitoring auf europäischer Ebene, eine stringente sektorenübergreifende CO₂-Bepreisung und ein effektives Kohlenstoffkreislaufmanagement.

Infrastrukturumbau, Netzausbau und Monitoring

Für den Infrastrukturumbau des Energiesystems sind große öffentliche und private Investitionen notwendig. Bei Stromübertragungsnetzen, der Wasserstoffinfrastruktur, Ladesäulen für E-Mobilität und digitalen Infrastrukturen ist eine enge europaweite Koordination erforderlich, damit ein einheitliches europäisches Energiesystem entstehen kann. Erneuerbarer Strom muss möglichst ohne Engpässe transportiert und verteilt werden. Dafür braucht es leistungsfähige Übertragungs- und Verteilnetze sowie Energiespeicher, die der fluktuierenden Natur regenerativer Energieerzeugung Rechnung tragen. Zudem sind Investitionen in die Energieeffizienz wichtig, da sie die Energienachfrage insgesamt reduzieren.

Um die Wirksamkeit der europäischen Energie- und Klimapolitik zeitnah und präzise einzuordnen und gegebenenfalls nachsteuern zu können, sollte die EU zudem ein umfassendes Monitoringsystem einrichten. Als zentrale Ziel- und Messgröße eignet sich die absolute Menge der jährlichen Treibhausgasemissionen.

CO₂-Preis als Leitinstrument der Klimapolitik

Eine allgemeine CO₂-Bepreisung schafft einen ökonomisch effizienten, stabilen und langfristigen Rahmen für die Transformation des Energiesystems. Der CO₂-Preis sollte daher als Leitinstrument der europäischen und internationalen Klimapolitik etabliert werden. Dabei ist für alle Treibhausgase sektoren-, regionen-, akteurs- und technologieübergreifend ein einheitlicher Preis anzustreben. Ob diese CO₂-Bepreisung mengenbasiert (Zertifikatehandel) oder preisbasiert (Steuer/Abgabe) umgesetzt wird, ist aus volkswirtschaftlicher Sicht zweitrangig.

Frage und Antwort

Nachgefragt

Warum brauchen wir einen CO₂-Preis?

Antwort

Durch einen CO₂-Preis wird der Verbrauch von fossilen Energieträgern finanziell unattraktiv, da die bei der Herstellung oder dem Verbrauch eines Produkts entstehenden CO₂-Emissionen bezahlt werden müssen. So kann der CO₂-Preis das Verhalten von Verbraucherinnen und Verbrauchern, von Unternehmen und von Investoren ändern und Anreize schaffen, auf klimafreundliche Alternativen bei der Stromversorgung, dem Heizen oder der Mobilität umzusteigen. Zudem kann ein CO₂-Preis technologische Innovationen auslösen und Einnahmen generieren, die im Sinne der europäischen Klimapolitik verwendet werden können. Obwohl die Bepreisung von Kohlenstoff das Potenzial hat, die globale Wirtschaft zu defossilisieren, ist bislang nur etwa ein Fünftel der weltweiten Emissionen von Bepreisungssystemen erfasst. Der globale Durchschnittspreis (in $ pro Tonne) liegt lediglich im einstelligen Bereich. Es wäre aber ein globaler Kohlenstoffpreis im hohen zweistelligen oder gar dreistelligen Bereich erforderlich, um die Emissionen so weit zu senken, dass die globale Erwärmung unter 2°C bleibt. Dabei ist zu beachten, dass nicht-preisliche Maßnahmen ebenfalls Kosten aufwerfen, die – in entsprechende (Schatten-)Preise je vermiedener Tonne umgerechnet – typischerweise zu weit höheren Belastungen führen.

Um soziale Härten eines hohen CO₂-Preises auszugleichen, sollte ein erheblicher Teil der Einnahmen an die Haushalte zurückgezahlt werden, etwa in Form einer „Klimadividende“. Dabei sollten – relativ zu ihren Einkommen – vor allem Haushalte mit niedrigem Einkommen begünstigt werden. Dies kann zur gesellschaftlichen Akzeptanz beitragen. Klimaschützendes Verhalten könnte dann sogar zu einem finanziellen Gewinn für Konsumentinnen und Konsumenten führen, vor allem bei unteren Einkommensgruppen.

Audioplayer

Prof. Dr. Christoph M. Schmidt über die Stärke der CO₂-Bepreisung

Ökonom

0:00 / 0:00

Mit dem EU-Emissionshandel (EU-ETS) ist für die Bereiche Energiewirtschaft, Industrie und den innereuropäischen Flugverkehr ein funktionsfähiges Instrument etabliert, das bereits etwa 45 Prozent der Treibhausgasemissionen der EU erfasst. Dieses Instrument gilt es weiter auszubauen und zu verbessern. Zum Beispiel sollte das Klimaschutzziel der EU-weiten Treibhausgasneutralität bis 2050 für alle Mitgliedstaaten verbindlich im EU-Klimagesetz verankert werden. Eine konsequente Absenkung der zulässigen Emissionsmenge sorgt verlässlich für einen wirksamen CO₂-Preispfad, der Planungssicherheit schafft und dauerhafte Anreize für nachhaltige Klimaschutzinvestitionen setzt.

Wie funktioniert der Emissionshandel?

Die folgenden Grafiken zeigen Schritt für Schritt, wie Zertifikate vergeben, gehandelt und reduziert werden – und wie dadurch Klimaschutz marktwirtschaftlich wirksam wird.

Kohlenstoffkreislaufmanagement

Auf der Erde gibt es einen natürlichen Kohlenstoffkreislauf. Pflanzen nehmen Kohlenstoff aus der Luft oder dem Wasser auf und binden ihn in Biomasse. Damit ist der Kohlenstoff für eine bestimmte Zeit der Atmosphäre und dem Wasser entzogen. Abgestorbene Pflanzenmasse wird durch Mikroorganismen zersetzt und so gelangt der Kohlenstoff wieder in die Atmosphäre.

Humusreiche Böden, Ozeane und Wälder speichern große Mengen Kohlenstoff und helfen somit, CO₂-Emissionen aufzunehmen. In Deutschland spielen Moorböden eine wichtige Rolle beim Klimaschutz. In funktionierenden (nicht entwässerten) Mooren wird Biomasse nicht zersetzt und damit der in ihr gespeicherte Kohlenstoff dauerhaft der Atmosphäre entzogen und als Torf gespeichert. Durch Faktoren wie die Verbrennung von fossilen Brennstoffen und die intensive Landnutzung wird immer mehr Kohlenstoffdioxid freigesetzt und gelangt in die Atmosphäre oder den Ozean. Wie lange z. B. die Ozeane weiter CO₂ aufnehmen können, ist unsicher. Es ist möglich, dass ab ca. 2050 die CO₂-Aufnahmefähigkeit der Ozeane erschöpft ist und diese zur CO₂-Quelle werden. Das würde die Erderwärmung noch verstärken.

Selbst optimistische Szenarien zur Entwicklung der globalen Treibhausgasemissionen gehen davon aus, dass bis zur Mitte dieses Jahrhunderts fossile Energieträger genutzt werden. Das heißt, es werden mehr klimarelevante Gase emittiert als zulässig. Außerdem gibt es Bereiche, in denen es schwierig sein wird, bis 2050 vollständig auf CO₂-Emissionen zu verzichten (z. B. Flug- und Schiffsverkehr, Zementproduktion). Daher wird es mittelfristig notwendig sein, der Atmosphäre dauerhaft CO₂ zu entziehen, also ein sogenanntes Kohlenstoffkreislaufmanagement zu forcieren.

Kohlenstoffspeicherung: Technologische Lösungen

Die technischen Verfahren der Kohlenstoffspeicherung bestehen aus zwei Schritten: der Entfernung von CO₂ aus der Atmosphäre und seiner langfristigen Lagerung bzw. Speicherung. Eine Möglichkeit ist die Bindung von CO₂ an Biomasse. Wird diese verbrannt, um Energie zu erzeugen, entsteht stark konzentriertes CO₂. Dieses kann dann aus den Verbrennungsgasen abgetrennt und schließlich zur Produktion langlebiger Güter, wie Baumaterialien oder Kunststoffe, genutzt oder in geologische Formationen eingepresst werden. Die Filterung von CO₂ aus der Atmosphäre, direct air capture (DAC) ist ein derzeit in der Entwicklung befindliches Verfahren. Dieses muss allerdings durch einen erheblichen Aufwand an Energie und mit einigen weiteren bisher noch nicht gut gelösten chemischen Herausforderungen bezahlt werden.

Eine Familie möglicher Verfahren für die Speicherung und Weiterverwendung von Kohlenstoffdioxid ist „Carbon Capture and Utilization“ (kurz: CCU). Hier wird Kohlenstoff mindestens einem weiteren Nutzungszyklus zugeführt und kann zum Beispiel bei der Synthese von Endenergieträgern im Verkehr, der Industrie sowie der Wärmeversorgung genutzt werden. Je nach Herkunft und Nutzung des Kohlenstoffs erfordert dies verschiedene Verfahren, die unterschiedlich energie-, ressourcen- und umweltintensiv sind. Das CO₂ gelangt allerdings irgendwann wieder zurück in die Atmosphäre – wann genau, ist abhängig von der Langlebigkeit der Verbrauchsgüter.

Das „Carbon Dioxide Capture and Storage“-Verfahren (kurz: CCS) verfolgt das Ziel, CO₂ möglichst dauerhaft dem Kohlenstoffkreislauf zu entziehen und im Untergrund zu speichern. Dafür wird CO₂ zum Beispiel in geologischen Formationen oder auf dem Meeresgrund eingelagert. Das zu speichernde ⁠CO₂⁠ stammt entweder aus fossilen Energieversorgungs- und Industrieanlagen oder aus dem Einsatz von ⁠Biomasse⁠ zur Energieerzeugung. Für dieses Verfahren ist aktuell allerdings ein zusätzlicher Energieaufwand sowie ein erhöhter Verbrauch fossiler Rohstoffe notwendig.

Die Familie der CCU-Verfahren eignet sich dazu, einen Teil des aus der Atmosphäre entnommenen CO₂ (technisch oder mit Biomasse) mit grünem Wasserstoff zu Energieträgern (wie e-fuels oder SAF) zu verarbeiten. Zugleich wird ein äquivalenter Teil der Moleküle unter Zurückgewinnung des in ihnen enthaltenen Wasserstoffs zu elementarem Kohlenstoff umgewandelt. Dieser kann als Strukturmaterial dienen (Bodenverbesserung, Baustoffe) oder in Nachahmung der Natur endgelagert werden und damit dauerhaft der Atmosphäre entzogen bleiben.

Kohlenstoffspeicherung: Natürliche Lösungen

Für die langfristige Entnahme und Speicherung von Kohlenstoff aus der Atmosphäre bieten sich auch natürliche oder naturbasierte Lösungen an: Pflanzen bauen Kohlenstoff in Biomasse ein und speichern ihn in Holz und nach ihrem Absterben in organischen Ablagerungen (z. B. Humus oder Torf) in Wäldern, Feuchtgebieten, Küsten und Meeren. Neben dem positiven Effekt für das Klima dient das auch dem Erhalt bzw. der Wiederherstellung intakter Ökosysteme.  

So gehören neben großen Waldgebieten und dem globalen Permafrostgürtel der Erde auch Seegraswiesen an den Küsten von Nord- und Ostsee zu den bedrohten Lebensräumen. Seegraswiesen haben eine wichtige Funktion im Lebenszyklus von Fischen. Die Sedimente unter den Seegraswiesen speichern große Mengen Kohlenstoff, da die Biomasse ähnlich wie in Mooren nur sehr langsam zersetzt wird.

Zu den naturbasierten Lösungen zählen auch die forcierte Verwitterung von Gesteinen, die Ozeandüngung oder das Ausbringen von Biokohle.

Umfang des Kohlenstoffmanagements

Alle aufgeführten Verfahren zusammen können nur einen Bruchteil der heute entstehenden menschlichen CO₂ -Emissionen erfassen und sind kein Ersatz für den Verzicht auf fossile Energieträger. Bei ihrer Bewertung sind zwei Ziele zu unterscheiden: Zum einen das Ziel, mit CCU-Maßnahmen Kohlenstoff in einem technologischen Kreislauf zu halten, der ähnlich dem natürlichen Kreislauf konzipiert ist. Zum anderen das Ziel, Kohlenstoff dauerhaft aus der Atmosphäre zu entnehmen und damit klimaunwirksam zu machen. Solche Maßnahmen werden benötigt, um unvermeidliche technische Emissionen aus der stofflichen Nutzung von kohlenstoffhaltigen Mineralen (Zement und Glas) und aus den Konsequenzen der Landnutzung (z. B. Forst- und Landwirtschaft) zu neutralisieren. In noch größerem Maßstab werden sie erforderlich, um die heutigen Klimaziele einzuhalten. Dann müsste das bereits zuvor in die Atmosphäre eingebrachte CO₂ wieder herausgenommen und klimaunwirksam gemacht werden.

In jedem Fall erfordern die Maßnahmen des Kohlenstoffmanagements erhebliche Mengen zusätzlicher erneuerbarer Energie und Infrastrukturen für großtechnische Prozesse. Ihre Finanzierung muss heute schon beim Entwurf von Marktmodellen nachhaltiger Energiesysteme mit eingeplant werden.

Die Leopoldina verwendet Cookies

Wir setzen auf unserer Website Cookies ein. Einige von ihnen sind notwendig (funktionale Cookies), während andere nicht notwendig sind, uns aber helfen unser Onlineangebot zu verbessern und wirtschaftlich zu betreiben. 

Sie können in den Einsatz der nicht notwendigen Cookies mit dem Klick auf die Schaltfläche "Alle Akzeptieren" einwilligen oder per Klick individuelle Einstellungen vornehmen und diesen per “Auswahl übernehmen” zustimmen. 

Sie können diese Einstellungen jederzeit aufrufen und Cookies auch nachträglich abwählen.

Funktional

Diese Cookies sind technisch erforderlich, um folgende Kernfunktionalitäten der Website bereitstellen zu können:

  • Darstellung der Website
  • Anonymisierung von IP-Adressen innerhalb von Logfiles
  • Status-Cookie-Zustimmung
Komfort

Neben notwendigen Cookies setzen wir zudem Cookies ein, um Ihnen die Nutzung der Website angenehmer zu gestalten. Akzeptieren Sie diese Cookies, werden externe Medien ohne weitere Zustimmung von Ihnen geladen.

Tracking

Mithilfe von Statistik-Cookies können wir die Inhalte und Services unserer Website besser an Ihre Interessen und Bedürfnisse anpassen. Für Statistiken und Auswertungen setzen wir das Produkt etracker ein.

Warnung vor externen Links

Die Nutzung dieses Teildienstes erfordert ihre Einwilligung in die Verarbeitung zusätzlicher personenbezogener Daten durch einen selbständigen Verantwortlichen: Matterport Inc., 352 E. Java Drive, Sunnyvale, CA 94089, USA. Es gelten folgende Datenschutzhinweise: https://matterport.com/de/node/44. Mit der Einwilligung durch Klick auf „Ok“ kann auch eine Übermittlung von personenbezogenen Daten in ein Land außerhalb der Europäischen Union erfolgen. Die Einwilligung ist freiwillig. Eine Ablehnung führt zu keinen Nachteilen. Eine erteilte Einwilligung kann jederzeit mit Wirkung für die Zukunft widerrufen werden.

Ich bin damit einverstanden, dass bei Nutzung dieses Teildienstes zusätzliche personenbezogene Daten verarbeitet werden. Dabei verarbeitete Datenkategorien: technische Verbindungsdaten des Serverzugriffs (IP-Adresse, Datum, Uhrzeit, abgefragte Seite, Browser-Informationen), Daten zur Erstellung von Nutzungsstatistiken und Daten über die Nutzung der Website sowie die Protokollierung von Klicks auf einzelne Elemente. Zweck der Verarbeitung: Auslieferung von Inhalten, die von Dritten bereitgestellt werden. Rechtsgrundlage für die Verarbeitung: Ihre Einwilligung nach Art. 6 (1) a DSGVO, Art. 49 DSGVO. Verantwortlicher für die Datenverarbeitung Matterport Inc., 352 E. Java Drive, Sunnyvale, CA 94089, USA. Es gilt die Datenschutzerklärung von Matterport Inc.: https://matterport.com/de/node/44.

Seite besuchen ▸